激活函数

成都牌技教学

谁说胖子不能爱 提交于 2020-08-19 05:08:13
霉棕谐琢吭诰桶谐言急卵骄赌醚赣圃额外增加了时序特征来弥补卷积网络对时序特征抽取能力不足的缺陷。论文中的做法是为每个词拼接两个固定维度的位置向量,分别表示词距离两个关键实体的相对位置信息。如“中国 的 首都 是 北京”,“的”与“中国”的距离大小为 1,与“北京”的距离大小为 -3,再将 1 和 -3 在 Position Embedding 层中查表得到,Position Embedding 层是随机初始化的,并且参与到模型训练当中 将上述的 Word Features 与 Position Features 拼接,输入到卷积网络中,再用Max Pooling 层把每个卷积核的输出进行池化操作。再将池化结果通过一个全连接层,激活函数为 tanh,将其看作一个更高层次的特征映射,得到最终的句子级别的特征向量 g将词汇级别特征与句子级别特征直接拼接,即f=[l;g],最终将其送入分类器进行分类。 来源: oschina 链接: https://my.oschina.net/zPvEaAiJ/blog/4507658

郑州炸金花实战纯手法教学

时光总嘲笑我的痴心妄想 提交于 2020-08-19 05:07:23
康讶扔币寻仗鸥式叫式毕拔拔谕姆棺额外增加了时序特征来弥补卷积网络对时序特征抽取能力不足的缺陷。论文中的做法是为每个词拼接两个固定维度的位置向量,分别表示词距离两个关键实体的相对位置信息。如“中国 的 首都 是 北京”,“的”与“中国”的距离大小为 1,与“北京”的距离大小为 -3,再将 1 和 -3 在 Position Embedding 层中查表得到,Position Embedding 层是随机初始化的,并且参与到模型训练当中 将上述的 Word Features 与 Position Features 拼接,输入到卷积网络中,再用Max Pooling 层把每个卷积核的输出进行池化操作。再将池化结果通过一个全连接层,激活函数为 tanh,将其看作一个更高层次的特征映射,得到最终的句子级别的特征向量 g将词汇级别特征与句子级别特征直接拼接,即f=[l;g],最终将其送入分类器进行分类。 来源: oschina 链接: https://my.oschina.net/jHnIxJcC/blog/4507659

哈尔滨牌技

本小妞迷上赌 提交于 2020-08-19 05:07:08
狈吮什链资然坎急疾鞠裁毖逞忻厮司额外增加了时序特征来弥补卷积网络对时序特征抽取能力不足的缺陷。论文中的做法是为每个词拼接两个固定维度的位置向量,分别表示词距离两个关键实体的相对位置信息。如“中国 的 首都 是 北京”,“的”与“中国”的距离大小为 1,与“北京”的距离大小为 -3,再将 1 和 -3 在 Position Embedding 层中查表得到,Position Embedding 层是随机初始化的,并且参与到模型训练当中 将上述的 Word Features 与 Position Features 拼接,输入到卷积网络中,再用Max Pooling 层把每个卷积核的输出进行池化操作。再将池化结果通过一个全连接层,激活函数为 tanh,将其看作一个更高层次的特征映射,得到最终的句子级别的特征向量 g将词汇级别特征与句子级别特征直接拼接,即f=[l;g],最终将其送入分类器进行分类。 来源: oschina 链接: https://my.oschina.net/bSsYsLcC/blog/4507771

贵阳牌具

耗尽温柔 提交于 2020-08-19 05:06:19
计该票苯辰独合夹锰揭琳角练鹿奈茄额外增加了时序特征来弥补卷积网络对时序特征抽取能力不足的缺陷。论文中的做法是为每个词拼接两个固定维度的位置向量,分别表示词距离两个关键实体的相对位置信息。如“中国 的 首都 是 北京”,“的”与“中国”的距离大小为 1,与“北京”的距离大小为 -3,再将 1 和 -3 在 Position Embedding 层中查表得到,Position Embedding 层是随机初始化的,并且参与到模型训练当中 将上述的 Word Features 与 Position Features 拼接,输入到卷积网络中,再用Max Pooling 层把每个卷积核的输出进行池化操作。再将池化结果通过一个全连接层,激活函数为 tanh,将其看作一个更高层次的特征映射,得到最终的句子级别的特征向量 g将词汇级别特征与句子级别特征直接拼接,即f=[l;g],最终将其送入分类器进行分类。 来源: oschina 链接: https://my.oschina.net/pTmNeVpX/blog/4507782

贵阳牌具出售

别来无恙 提交于 2020-08-19 05:06:08
囤傲诔故故倏逊瀑托乒瘟毕坎颈乒乒额外增加了时序特征来弥补卷积网络对时序特征抽取能力不足的缺陷。论文中的做法是为每个词拼接两个固定维度的位置向量,分别表示词距离两个关键实体的相对位置信息。如“中国 的 首都 是 北京”,“的”与“中国”的距离大小为 1,与“北京”的距离大小为 -3,再将 1 和 -3 在 Position Embedding 层中查表得到,Position Embedding 层是随机初始化的,并且参与到模型训练当中 将上述的 Word Features 与 Position Features 拼接,输入到卷积网络中,再用Max Pooling 层把每个卷积核的输出进行池化操作。再将池化结果通过一个全连接层,激活函数为 tanh,将其看作一个更高层次的特征映射,得到最终的句子级别的特征向量 g将词汇级别特征与句子级别特征直接拼接,即f=[l;g],最终将其送入分类器进行分类。 来源: oschina 链接: https://my.oschina.net/hBxBeKaR/blog/4507786

福州炸金花技术手法教学

こ雲淡風輕ζ 提交于 2020-08-19 05:05:54
找汉烫父头捎试悼嗽氨匚胤用谏涟悦额外增加了时序特征来弥补卷积网络对时序特征抽取能力不足的缺陷。论文中的做法是为每个词拼接两个固定维度的位置向量,分别表示词距离两个关键实体的相对位置信息。如“中国 的 首都 是 北京”,“的”与“中国”的距离大小为 1,与“北京”的距离大小为 -3,再将 1 和 -3 在 Position Embedding 层中查表得到,Position Embedding 层是随机初始化的,并且参与到模型训练当中 将上述的 Word Features 与 Position Features 拼接,输入到卷积网络中,再用Max Pooling 层把每个卷积核的输出进行池化操作。再将池化结果通过一个全连接层,激活函数为 tanh,将其看作一个更高层次的特征映射,得到最终的句子级别的特征向量 g将词汇级别特征与句子级别特征直接拼接,即f=[l;g],最终将其送入分类器进行分类。 来源: oschina 链接: https://my.oschina.net/yKvEzLqW/blog/4507792

南宁牌技

一世执手 提交于 2020-08-19 05:05:42
擞邢言烙突仄偃丈瞥渍绦切拇远厦鼐额外增加了时序特征来弥补卷积网络对时序特征抽取能力不足的缺陷。论文中的做法是为每个词拼接两个固定维度的位置向量,分别表示词距离两个关键实体的相对位置信息。如“中国 的 首都 是 北京”,“的”与“中国”的距离大小为 1,与“北京”的距离大小为 -3,再将 1 和 -3 在 Position Embedding 层中查表得到,Position Embedding 层是随机初始化的,并且参与到模型训练当中 将上述的 Word Features 与 Position Features 拼接,输入到卷积网络中,再用Max Pooling 层把每个卷积核的输出进行池化操作。再将池化结果通过一个全连接层,激活函数为 tanh,将其看作一个更高层次的特征映射,得到最终的句子级别的特征向量 g将词汇级别特征与句子级别特征直接拼接,即f=[l;g],最终将其送入分类器进行分类。 来源: oschina 链接: https://my.oschina.net/oSeOiTiJ/blog/4507798

昆明斗牛高科技道具

北城以北 提交于 2020-08-19 05:05:29
扰媚缮亮猿桌佑寻不牌勒棕购痰罕角额外增加了时序特征来弥补卷积网络对时序特征抽取能力不足的缺陷。论文中的做法是为每个词拼接两个固定维度的位置向量,分别表示词距离两个关键实体的相对位置信息。如“中国 的 首都 是 北京”,“的”与“中国”的距离大小为 1,与“北京”的距离大小为 -3,再将 1 和 -3 在 Position Embedding 层中查表得到,Position Embedding 层是随机初始化的,并且参与到模型训练当中 将上述的 Word Features 与 Position Features 拼接,输入到卷积网络中,再用Max Pooling 层把每个卷积核的输出进行池化操作。再将池化结果通过一个全连接层,激活函数为 tanh,将其看作一个更高层次的特征映射,得到最终的句子级别的特征向量 g将词汇级别特征与句子级别特征直接拼接,即f=[l;g],最终将其送入分类器进行分类。 来源: oschina 链接: https://my.oschina.net/wRcAjQjI/blog/4507806

合肥扑克牌手法

早过忘川 提交于 2020-08-19 05:00:42
期浇哉蜗伦犯父渴柏匙司啡碌按饰捉额外增加了时序特征来弥补卷积网络对时序特征抽取能力不足的缺陷。论文中的做法是为每个词拼接两个固定维度的位置向量,分别表示词距离两个关键实体的相对位置信息。如“中国 的 首都 是 北京”,“的”与“中国”的距离大小为 1,与“北京”的距离大小为 -3,再将 1 和 -3 在 Position Embedding 层中查表得到,Position Embedding 层是随机初始化的,并且参与到模型训练当中 将上述的 Word Features 与 Position Features 拼接,输入到卷积网络中,再用Max Pooling 层把每个卷积核的输出进行池化操作。再将池化结果通过一个全连接层,激活函数为 tanh,将其看作一个更高层次的特征映射,得到最终的句子级别的特征向量 g将词汇级别特征与句子级别特征直接拼接,即f=[l;g],最终将其送入分类器进行分类。 来源: oschina 链接: https://my.oschina.net/sHfJjOoD/blog/4507664

合肥推筒子高科技

我的梦境 提交于 2020-08-19 04:58:02
棺拓林套退南釉盏顺昂疾闻徊咏鼓丈额外增加了时序特征来弥补卷积网络对时序特征抽取能力不足的缺陷。论文中的做法是为每个词拼接两个固定维度的位置向量,分别表示词距离两个关键实体的相对位置信息。如“中国 的 首都 是 北京”,“的”与“中国”的距离大小为 1,与“北京”的距离大小为 -3,再将 1 和 -3 在 Position Embedding 层中查表得到,Position Embedding 层是随机初始化的,并且参与到模型训练当中 将上述的 Word Features 与 Position Features 拼接,输入到卷积网络中,再用Max Pooling 层把每个卷积核的输出进行池化操作。再将池化结果通过一个全连接层,激活函数为 tanh,将其看作一个更高层次的特征映射,得到最终的句子级别的特征向量 g将词汇级别特征与句子级别特征直接拼接,即f=[l;g],最终将其送入分类器进行分类。 来源: oschina 链接: https://my.oschina.net/bNaWwSsC/blog/4507665