「自然语言处理(NLP)」一文带你了解激活函数
喜欢我们,点击上方 AINLPer ,关注一下,极品干货即刻送达! 引言 在深度学习网络中,我们经常可以看到对于某一个隐藏层节点的激活值计算一般分为两步,如下图: 第一步,输入该节点的值为 , 时,在进入这个隐藏节点后,会先进行一个线性变换,计算出值 ,上标 1 表示第 1 层隐藏层。 第二步,再进行一个非线性变换,也就是经过非线性激活函数,计算出该节点的输出值(激活值) ,其中 g(z)为非线性函数。 那么问题来了,这个激活函数到底有什么用呢,可不可以不加激活函数呢? 本文概要 1 什么是激活函数? 2 如果没有激活函数会怎样? 3 常见的激活函数 4 参考文献 正文开始 1 什么是激活函数? 激活函数是神经网络中极其重要的概念。 它们决定了某个神经元是否被激活,这个神经元接受到的信息是否是有用的,是否该留下或者是该抛弃。 激活函数的形式如下: 激活函数是我们对输入做的一种非线性的转换。 转换的结果输出,并当作下一个隐藏层的输入。 2 如果没有激活函数会怎样? 1、首先对于y=ax+b 这样的函数,当x的输入很大时,y的输出也是无限大/小的,经过多层网络叠加后,值更加膨胀的没边了,这显然不符合我们的预期,很多情况下我们希望的输出是一个概率。 2、线性变换太简单(只是加权偏移),限制了对复杂任务的处理能力。 没有激活函数的神经网络就是一个线性回归模型。