【全文翻译】YOLOv4:目标检测的最佳速度和准确性
论文连接: https://arxiv.org/abs/2004.10934 翻译的很多都是直译的,不准的地方请欢迎大佬指正 摘要 有许多功能可以提高卷积神经网络(CNN)的准确性。需要在大型数据集上对这些特征的组合进行实际测试,并对结果进行理论证明。一些功能仅在某些模型上运行,并且仅在某些问题上运行,或者仅在小规模数据集上运行; 而某些功能(例如批归一化和残差连接)适用于大多数模型,任务和数据集。我们假设此类通用功能包括加权残差连接(WRC),跨阶段部分连接(CSP),跨小批量标准化(CmBN),自对抗训练(SAT)和Mish激活函数。我们使用以下新功能:WRC,CSP,CmBN,SAT,Mish激活,Mosaic数据增强,CmBN,DropBlock正则化和CIoU_loss,并结合使用其中的一些功能以实现最新的结果:43.5%的AP(65.7 在Tesla V100上,MS COCO数据集的实时速度约为65 FPS。源代码位于 https://github.com/AlexeyAB/darknet 。 Introduction 大多数基于CNN的物体检测器仅适用于推荐系统。例如,通过慢速精确模型执行通过城市摄像机搜索空闲停车位的过程,而汽车碰撞警告则与快速不准确的模型有关。提高实时物体检测器的准确性,不仅可以将它们用于生成推荐系统,还可以用于独立的流程管理并能减少人工输入