阶跃函数

第3章 神经网络

有些话、适合烂在心里 提交于 2019-11-29 17:05:02
上一章我们学习了感知机。关于感知机,既有好消息,也有坏消息。好消息是,即便对于复杂的函数,感知机也隐含着能够表示它的可能性。上一章已经介绍过,即便是计算机进行的复杂处理,感知机(理论上)也可以将其表示出来。坏消息是,设定权重的工作,即确定合适的、能符合预期的输入与输出的权重,现在还是由人工进行的。上一章中,我们结合与门、或门的真值表人工决定了合适的权重。 神经网络的出现就是为了解决刚才的坏消息。具体地讲,神经网络的一个重要性质是它可以自动地从数据中学习到合适的权重参数。本章中,我们会先介绍神经网络的概要,然后重点关注神经网络进行识别时的处理。在下一章中,我们将了解如何从数据中学习权重参数。 3.1 从感知机到神经网络 神经网络和上一章介绍的感知机有很多共同点。这里,我们主要以两者的差异为中心,来介绍神经网络的结构。 3.1.1 神经网络的例子 用图来表示神经网络的话,如图3-1所示。我们把最左边的一列称为 输入层 ,最右边的一列称为 输出层 ,中间的一列称为中间层。中间层有时也称为 隐藏层 。“隐藏”一词的意思是,隐藏层的神经元(和输入层、输出层不同)肉眼看不见。另外,本书中把输入层到输出层依次称为第0层、第1层、第2层(层号之所以从0开始,是为了方便后面基于Python 进行实现)。图3-1中,第0层对应输入层,第1层对应中间层,第2层对应输出层。 图3-1 神经网络的例子