谷歌开源的基于 TensorFlow 的轻量级框架 AdaNet几大优势
TensorFlow 是相对高阶的机器学习库,用户可以方便地用它设计神经网络结构,而不必为了追求高效率的实现亲自写 C++或 CUDA 代码。它和 Theano 一样都支持自动求导,用户不需要再通过反向传播求解梯度。 而基于 TensorFlow 的轻量级框架 AdaNet,可以使用少量专家干预来自动学习高质量模型。据介绍,AdaNet 在谷歌近期的强化学习和基于进化的 AutoML 的基础上构建,快速灵活同时能够提供学习保证(learning guarantee)。重要的是,AdaNet 提供通用框架,不仅能用于学习神经网络架构,还能学习集成架构以获取更好的模型。 结合不同机器学习模型预测的集成学习在神经网络中得到广泛使用以获得最优性能,它从其悠久历史和理论保证中受益良多,从而在 Netflix Prize 和多项 Kaggle 竞赛等挑战赛中取得胜利。但是,因其训练时间长、机器学习模型的选择要求领域专业知识,它们在实践中并不那么常用。而随着算力、深度学习专用硬件(如 TPU)的发展,机器学习模型将越来越大,集成技术也将越发重要。现在,想象一个工具,它能够自动搜索神经架构,学习将最好的神经架构集成起来构建高质量模型。 刚刚,谷歌发布博客,开源了基于 TensorFlow 的轻量级框架 AdaNet,该框架可以使用少量专家干预来自动学习高质量模型。AdaNet