HDFS

On HDFS, I want to display normal text for a hive table stored in ORC format

拟墨画扇 提交于 2020-05-31 04:45:08
问题 I have saved json dataframe in Hive using orc format jsonDF.write.format("orc").saveAsTable(hiveExamples.jsonTest) Now I need to display the file as a normal text on HDFS. Is there away to do this? I have used hdfs dfs -text /path-of-table , but it displays the data in ORC format. 回答1: From the linux shell command there is an utility called "hive --orcfiledump" To see the metadata of an ORC file in HDFS you can invoke the command like: [@localhost ~ ]$ hive --orcfiledump <path to HDFS ORC

On HDFS, I want to display normal text for a hive table stored in ORC format

无人久伴 提交于 2020-05-31 04:42:22
问题 I have saved json dataframe in Hive using orc format jsonDF.write.format("orc").saveAsTable(hiveExamples.jsonTest) Now I need to display the file as a normal text on HDFS. Is there away to do this? I have used hdfs dfs -text /path-of-table , but it displays the data in ORC format. 回答1: From the linux shell command there is an utility called "hive --orcfiledump" To see the metadata of an ORC file in HDFS you can invoke the command like: [@localhost ~ ]$ hive --orcfiledump <path to HDFS ORC

How to write pyspark dataframe to HDFS and then how to read it back into dataframe?

一笑奈何 提交于 2020-05-28 13:46:55
问题 I have a very big pyspark dataframe. So I want to perform pre processing on subsets of it and then store them to hdfs. Later I want to read all of them and merge together. Thanks. 回答1: writing DataFrame to HDFS (Spark 1.6). df.write.save('/target/path/', format='parquet', mode='append') ## df is an existing DataFrame object. some of the format options are csv , parquet , json etc. reading DataFrame from HDFS (Spark 1.6). from pyspark.sql import SQLContext sqlContext = SQLContext(sc)

How to write pyspark dataframe to HDFS and then how to read it back into dataframe?

為{幸葍}努か 提交于 2020-05-28 13:46:48
问题 I have a very big pyspark dataframe. So I want to perform pre processing on subsets of it and then store them to hdfs. Later I want to read all of them and merge together. Thanks. 回答1: writing DataFrame to HDFS (Spark 1.6). df.write.save('/target/path/', format='parquet', mode='append') ## df is an existing DataFrame object. some of the format options are csv , parquet , json etc. reading DataFrame from HDFS (Spark 1.6). from pyspark.sql import SQLContext sqlContext = SQLContext(sc)

Column missing when trying to open hdf created by pandas in h5py

白昼怎懂夜的黑 提交于 2020-05-16 22:32:09
问题 This is what my dataframe looks like. The first column is a single int. The second column is a single list of 512 ints. IndexID Ids 1899317 [0, 47715, 1757, 9, 38994, 230, 12, 241, 12228... 22861131 [0, 48156, 154, 6304, 43611, 11, 9496, 8982, 1... 2163410 [0, 26039, 41156, 227, 860, 3320, 6673, 260, 1... 15760716 [0, 40883, 4086, 11, 5, 18559, 1923, 1494, 4, ... 12244098 [0, 45651, 4128, 227, 5, 10397, 995, 731, 9, 3... I saved it to hdf and tried opening it using df.to_hdf('test.h5', key=

Column missing when trying to open hdf created by pandas in h5py

回眸只為那壹抹淺笑 提交于 2020-05-16 22:31:31
问题 This is what my dataframe looks like. The first column is a single int. The second column is a single list of 512 ints. IndexID Ids 1899317 [0, 47715, 1757, 9, 38994, 230, 12, 241, 12228... 22861131 [0, 48156, 154, 6304, 43611, 11, 9496, 8982, 1... 2163410 [0, 26039, 41156, 227, 860, 3320, 6673, 260, 1... 15760716 [0, 40883, 4086, 11, 5, 18559, 1923, 1494, 4, ... 12244098 [0, 45651, 4128, 227, 5, 10397, 995, 731, 9, 3... I saved it to hdf and tried opening it using df.to_hdf('test.h5', key=

Hbase Error “ERROR: KeeperErrorCode = NoNode for /hbase/master”

别等时光非礼了梦想. 提交于 2020-05-09 06:49:47
问题 While executing any command in hbase shell, I am receiving the following error "ERROR: KeeperErrorCode = NoNode for /hbase/master" in hbase shell. Started HBASE : HOSTCHND:hbase-2.0.0 gvm$ ./bin/start-hbase.sh localhost: running zookeeper, logging to /usr/local/Cellar/hbase-2.0.0/bin/../logs/hbase-gvm-zookeeper-HOSTCHND.local.out running master, logging to /usr/local/Cellar/hbase-2.0.0/logs/hbase-gvm-master-HOSTCHND.local.out : running regionserver, logging to /usr/local/Cellar/hbase-2.0.0

spark和 mapreduce的比较

北慕城南 提交于 2020-05-08 19:55:57
网上查阅一些资料,收集整理如下: 1、 通用性 spark更加通用,spark提供了transformation和action这两大类的多个功能api,另外还有流式处理sparkstreaming模块、图计算GraphX等等;mapreduce只提供了map和reduce两种操作,流计算以及其他模块的支持比较缺乏。 2、 内存利用和磁盘开销 MapReduce的设计:中间结果需要写磁盘,Reduce写HDFS,多个MR之间通过HDFS交换数据,,可以提高可靠性,减少内存占用,但是牺牲了性能。 Spark默认把结果写到内存, Spark的DAGScheduler相当于一个改进版的MapReduce,如果计算不涉及与其他节点进行数据交换,Spark可以在内存中一次性完成这些操作,也就是中间结果无须落盘,减少了磁盘IO的操作。(但是,如果计算过程中涉及数据交换,Spark也是会把shuffle的数据写磁盘的!!!),还有一方面就是对shuffle操作的优化,spark提供Cache机制来支持需要反复迭代计算或者多次数据共享,减少中间文件的生成,减少数据读取的IO开销。另外DAG相比MapReduce在大多数情况下可以减少shuffle次数。 3、 任务调度 mapreduce任务调度和启动开销大; spark线程池模型减少task启动开销 4、 排序 Spark 避免不必要的排序操作

5月7日 JindoFS 系列直播 第五讲【JindoFS Fuse 支持】

亡梦爱人 提交于 2020-05-08 15:59:53
主题: JindoFS Fuse 支持 时间: 2020.5.8 19:00 参与方式: 扫描下方二维码加入钉钉群直接观看 或届时点击链接进入直播间 https://developer.aliyun.com/live/2766?preview=1 讲师: 苏昆辉,花名抚月,阿里巴巴计算平台事业部 EMR 高级工程师, Apache HDFS committer. 目前从事开源大数据存储和优化方面的工作。 直播简介: 本次直播主要介绍如何利用FUSE的POSIX文件系统接口,像本地磁盘一样轻松使用大数据存储系统, 为云上AI场景提供了高效的数据访问手段。 来源: oschina 链接: https://my.oschina.net/u/4359458/blog/4270507

Hadoop环境搭建--Docker完全分布式部署Hadoop环境(菜鸟采坑吐血整理)

烈酒焚心 提交于 2020-05-08 10:25:47
系统:Centos 7,内核版本3.10 本文介绍如何从0利用Docker搭建Hadoop环境,制作的镜像文件已经分享,也可以直接使用制作好的镜像文件。 一、宿主机准备工作 0、宿主机(Centos7 )安装Java(非必须,这里是为了方便搭建用于调试的伪分布式环境) 1、宿主机安装Docker并启动Docker服务 安装: yum install -y docker 启动: service docker start 二、制作Hadoop镜像 (本文制作的镜像文件已经上传,如果直接使用制作好的镜像,可以忽略本步,直接跳转至步骤三) 1、从官方下载Centos镜像 docker pull centos 下载后查看镜像 docker images 可以看到刚刚拉取的Centos镜像 2、为镜像安装Hadoop 1)启动centos容器 docker run -it centos 2) 容器 内安装java https://www.oracle.com/technetwork/java/javase/downloads/index.html 下载java,根据需要选择合适版本,如果下载历史版本拉到页面底端,这里我安装了java8 /usr下创建java文件夹,并将java安装包在java文件下解压 tar -zxvf jdk-8u192-linux-x64. tar .gz