spark checkpoint
Checkpoint 到底是什么和需要用 Checkpoint 解决什么问题: Spark 在生产环境下经常会面临 Transformation 的 RDD 非常多(例如一个Job 中包含1万个RDD) 或者是具体的 Transformation 产生的 RDD 本身计算特别复杂和耗时 (例如计算时常超过1个小时) , 可能业务比较复杂,此时我们必需考虑对计算结果的持久化。 Spark 是擅长 多步骤迭代 ,同时擅长基于 Job 的复用。这个时候如果可以对计算的过程进行复用,就可以极大的提升效率。因为有时候有共同的步骤,就可以免却重复计算的时间。 如果采用 persists 把数据在内存中的话,虽然最快速但是也是最不可靠的;如果放在磁盘上也不是完全可靠的,例如磁盘会损坏,系统管理员可能会清空磁盘。 Checkpoint 的产生就是为了相对而言更加可靠的持久化数据,在 Checkpoint 可以指定把数据放在本地并且是多副本的方式,但是在正常生产环境下放在 HDFS 上,这就天然的借助HDFS 高可靠的特征来完成最大化的 可靠的持久化数据的方式 。 Checkpoint 是为了 最大程度保证绝对可靠的复用 RDD 计算数据的 Spark 的高级功能,通过 Checkpoint 我们通过把数据持久化到 HDFS 上来保证数据的最大程度的安任性 Checkpoint 就是针对整个RDD