Elasticsearch - 倒排索引原理
关于es为什么搜索快,大家应该有所了解,但是到底什么是倒排索引?网上找到一篇介绍通俗易懂,转载如下: 见其名知其意,有倒排索引,对应肯定,有正向索引。 正向索引(forward index),反向索引(inverted index)更熟悉的名字是倒排索引。 在搜索引擎中每个文件都对应一个文件ID,文件内容被表示为一系列关键词的集合(实际上在搜索引擎索引库中,关键词也已经转换为关键词ID)。例如“文档1”经过分词,提取了20个关键词,每个关键词都会记录它在文档中的出现次数和出现位置。 得到正向索引的结构如下: “文档1”的ID > 单词1:出现次数,出现位置列表;单词2:出现次数,出现位置列表;…………。 “文档2”的ID > 此文档出现的关键词列表。 一般是通过key,去找value。 当用户在主页上搜索关键词“华为手机”时,假设只存在正向索引(forward index),那么就需要扫描索引库中的所有文档,找出所有包含关键词“华为手机”的文档,再根据打分模型进行打分,排出名次后呈现给用户。因为互联网上收录在搜索引擎中的文档的数目是个天文数字,这样的索引结构根本无法满足实时返回排名结果的要求。 所以,搜索引擎会将正向索引重新构建为倒排索引,即把文件ID对应到关键词的映射转换为关键词到文件ID的映射,每个关键词都对应着一系列的文件,这些文件中都出现这个关键词。