哈希算法在分布式系统中的应用(极客时间)
1.负载均衡 1.1.需求 如何实现一个会话粘滞(session sticky)的负载均衡算法?也就是说,在一次会话中的所有请求都路由到同一个服务器上。 1.2.解决方案 通过哈希算法对客户端IP或会话ID计算哈希值,将取得的哈希值与服务器列表的大小进行取模运算,最终得到的值就是应该被路由到的服务器编号。这样,就可以把同一个IP过来的请求都路由到同一个后端服务器上。 2.数据分片 2.1.如何统计“搜索关键词”出现的次数? ①需求描述 假如我们有1T的日志文件,这里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢? ②问题分析 这个问题有两个难点,第一个是搜索的日子很大,没办法放到一台机器的内存中。第二个是只用一台机器来处理这么巨大的数据,处理时间会很长。 ③解决方案 先对数据进行分片,然后采用多台(比如n台)机器进行处理。具体做法:从搜索记录的日志文件中依次读取每个关键词,并通过哈希函数计算该关键词的哈希值,然后跟机器的台数n取模,最终得到值就是该关键词应该被分到的机器编号,这样相同的关键词一定会被分配到同一台机器上,数据分配完成后,由多台机器并行进行统计,最后合并起来就是最终结果。 实际上,这里的处理过程也是 MapReduce 的基本设计思想。 2.2.如何快速判断图片是否存在图库中? ①需求描述 假设现在我们的图库中有1亿张图片