Closure properties of context free languages
问题 I have the following problem: Languages L1 = {a^n * b^n : n>=0} and L2 = {b^n * a^n : n>=0} are context free languages so they are closed under the L1L2 so L={a^n * b^2n A^n : n>=0} must be context free too because it is generated by a closure property. I have to prove if this is true or not. So I checked the L language and I don’t think that it is context free then I also saw that L2 is just L1 reversed. Do I have to check if L1, L2 are deterministic? 回答1: L1={a n b n : n>=0} and L2={b n a n