浅谈GAN生成对抗网络
浅谈GAN——生成对抗网络 重要引用: 深度学习新星:GAN的基本原理、应用和走向 | 硬创公开课 ; 生成对抗网络(GAN)相比传统训练方法有什么优势? ; 通过拳击学习生成对抗网络(GAN)的基本原理 最近总是听老板提起对抗学习,好奇之心,在网上搜集了一些相关资料,整理如下,大部分摘自重要引用的内容。 近年来,基于数据而习得“特征”的深度学习技术受到狂热追捧,而其中GAN模型训练方法更加具有激进意味:它生成数据本身。 GAN是“生成对抗网络”(Generative Adversarial Networks)的简称,由2014年还在蒙特利尔读博士的Ian Goodfellow引入深度学习领域。2016年,GAN热潮席卷AI领域顶级会议,从ICLR到NIPS,大量高质量论文被发表和探讨。Yann LeCun曾评价GAN是“20年来机器学习领域最酷的想法”。 在GAN这片新兴沃土,除了Ian Goodfellow所在的OpenAI在火力全开,Facebook的人工智能实验室也在这一领域马不停蹄深耕,而苹果近日曝出的首篇AI论文,就是基于GANs的变种“SimGAN”。从学术界到工业界,GANs席卷而来。 GANs是深度学习领域比较重要的一个模型,也是人工智能研究的一个重要工具。我们现在所追求的人工智能,一个很重要的特性就是能够像我们人类一样,理解周围复杂的世界