概率分布

从随机过程的熵率和马尔科夫稳态过程引出的一些思考 - 人生逃不过一场马尔科夫稳态

旧时模样 提交于 2019-11-26 19:21:01
1. 引言 0x1:人生就是一个马尔科夫稳态 每一秒我们都在做各种各样的选择,要吃青菜还是红烧肉、看电影还是看书、跑步还是睡觉,咋一看起来,每一个选择都是随机的,而人生又是由无数个这样的随机选择组成的结果。从这个前提往下推导,似乎可以得出一个结论,即人生是无常的,未来是不可预测的。但事实真的是如此吗? 以前的老人流行说一句话,三岁看小,七岁看老。这似乎是一句充满迷信主义色彩的俗语,但其实其中暗含了非常质朴而经典的理论依据,即随机过程不管其转移概率分布如何,随着时序的增大,最终会收敛在某个稳态上。用人话说就是:人在七岁时,其核心性格会定型,在今后的一生中,不管其经历了什么,最终都会殊途同归,到达同一个人生结局。 现在很流行一句话叫,性格决定命运。这句话从很多不同的学科中可以得到不同的解释,例如现代心理学会说性格的本质就是潜意识,而潜意识影响所有的思想和行为,进而影响了命运。社会行为学会说性格决定了你的人际网络拓朴结构与网络信息交互率等因素,而成功的人往往是那种同时占据了多个重要结构洞的关键人物,例如国家领导人或者公司高层。用信息论马尔柯夫随机过程的理论来解释就说,每个人的概率转移函数在很小的时候就会基本定型,对于每个人来说,出生、天赋这些都不是至关重要的因素,而相反,决定一个人最终能得到多少成就的决定因素是你的n,也即你能在多大程度上延伸生命的长度,生命周期n越长

Linear Regreesion

做~自己de王妃 提交于 2019-11-26 11:37:23
3、似然函数: 我是这么理解的,比如说我们知道某个X的概率分布密度函数,但是这个概率分布有未知的参数,但是我想得到这个未知的参数θ,然后我们就通过很多个已知的变量,把这些概率分布密度函数乘起来,这个就是似然函数。 最大似然函数 : 知道似然函数后,我们就要求出这个未知参数,我们要求的这个参数应该使得似然函数最大,即概率分布最大。 期望风险(真实风险) ,可理解为 模型函数固定时,数据 平均的 损失程度,或“平均”犯错误的程度。 期望风险是依赖损失函数和概率分布的。 只有样本,是无法计算期望风险的。 所以,采用 经验风险 ,对期望风险进行估计,并设计学习算法,使其最小化。即经验风险最小化(Empirical Risk Minimization)ERM,而经验风险是用损失函数来评估的、计算的。 对于分类问题,经验风险,就训练样本错误率。 对于函数逼近,拟合问题,经验风险,就平方训练误差。 对于概率密度估计问题,ERM,就是最大似然估计法。 转载于:https://www.cnblogs.com/GuoJiaSheng/p/3871464.html 来源: https://blog.csdn.net/weixin_30815427/article/details/98825775