经典分类模型(七):ResNext(2017)
Aggregated Residual Transformations for Deep Neural Networks----2017ResNext Abstract 我们提出了一种用于图像分类的简单, 高度模块化 的网络体系结构。我们的网络是通过 重复构建模块 来构建的,该模块聚合具有相同拓扑的一组转换。我们的简单设计导致了同类的多分支架构,仅需设置几个超参数。 此策略提供了一个新维度,我们将其称为“基数”(转换集的大小),它是深度和宽度维度之外的一个重要因素。 在ImageNet-1K数据集上,我们根据经验表明,即使在保持复杂性的限制条件下, 增加基数也可以提高分类精度 。此外,当我们增加容量时,增加基数比深入或更广泛更有效。我们的模型名为 ResNeXt ,是我们进入2016年ILSVRC分类任务的基础,我们获得了第二名。我们进一步在ImageNet-5K集和COCO检测集上对ResNeXt进行了研究,其结果也比ResNet同类要好。该代码和模型可以在线公开获得1。 1.Introduction 视觉识别的研究正在经历从“功能工程”到“网络工程”的转变[25、24、44、34、36、38、14]。与传统的手工设计特征(例如,SIFT [29]和HOG [5])相反,神经网络从大规模数据中学习的特征[33]在训练过程中所需的人力最少,并且可以转移到各种识别任务中[7,10