分布式事务

深入解读微服务架构下分布式事务解决方案

喜欢而已 提交于 2019-11-28 15:08:33
原文引用 大专栏 https://www.dazhuanlan.com/2019/08/26/5d6350a8eda02/ 1 微服务的发展 微服务倡导将复杂的单体应用拆分为若干个功能简单、松耦合的服务,这样可以降低开发难度、增强扩展性、便于敏捷开发。当前被越来越多的开发者推崇,很多互联网行业巨头、开源社区等都开始了微服务的讨论和实践。 Hailo有160个不同服务构成,NetFlix有大约600个服务。国内方面,阿里巴巴、腾讯、360、京东、58同城等很多互联网公司都进行了微服务化实践。 当前微服务的开发框架也非常多,比较著名的有Dubbo、SpringCloud、thrift 、grpc等。 2 微服务落地存在的问题 虽然微服务现在如火如荼,但对其实践其实仍处于探索阶段。很多中小型互联网公司,鉴于经验、技术实力等问题,微服务落地比较困难。如著名架构师Chris Richardson所言,目前存在的主要困难有如下几方面: 1)单体应用拆分为分布式系统后,进程间的通讯机制和故障处理措施变的更加复杂。 2)系统微服务化后,一个看似简单的功能,内部可能需要调用多个服务并操作多个数据库实现,服务调用的分布式事务问题变的非常突出。 3)微服务数量众多,其测试、部署、监控等都变的更加困难。 随着RPC框架的成熟,第一个问题已经逐渐得到解决。例如dubbo可以支持多种通讯协议

分布式事务之解决方案(TCC)

安稳与你 提交于 2019-11-28 10:38:04
4. 分布式事务解决方案之TCC 4.1. 什么是TCC事务 TCC是Try、Confirm、Cancel三个词语的缩写,TCC要求每个分支事务实现三个操作 :预处理Try、确认Confirm、撤销Cancel。Try操作做业务检查及资源预留,Confirm做业务确认操作,Cancel实现一个与Try相反的操作既回滚操作。TM首先发起所有的分支事务的try操作,任何一个分支事务的try操作执行失败,TM将会发起所有分支事务的Cancel操作,若try操作全部成功,TM将会发起所有分支事务的Confirm操作,其中Confirm/Cancel操作若执行失败,TM会进行重试。 分支事务失败的情况 : TCC分为三个阶段 : Try阶段是做业务检查(一致性)及资源预留(隔离),此阶段仅是一个初步操作,它和后续的Confirm一起才能真正构成一个完整的业务逻辑。 Confirm阶段是做确认提交,Try阶段所有分支事务执行成功后开始执行Confirm。通常情况下,采用TCC则认为Confirm阶段是不会出错的。即 :只要Try成功,Confirm一定成功。若Confirm阶段真的出错了,需引入重试机制或人工处理。 Cancel阶段是在业务执行错误需要回滚的状态下执行分支事务的业务取消,预留资源释放。通常情况下,采用TCC则认为Cancel阶段也是一定成功的。若Cancel阶段真的出错了

重新学习MySQL数据库6:浅谈MySQL的中事务与锁

陌路散爱 提交于 2019-11-28 10:36:27
『浅入深出』MySQL 中事务的实现 在关系型数据库中,事务的重要性不言而喻,只要对数据库稍有了解的人都知道事务具有 ACID 四个基本属性,而我们不知道的可能就是数据库是如何实现这四个属性的;在这篇文章中,我们将对事务的实现进行分析,尝试理解数据库是如何实现事务的,当然我们也会在文章中简单对 MySQL 中对 ACID 的实现进行简单的介绍。 事务其实就是并发控制的基本单位;相信我们都知道,事务是一个序列操作,其中的操作要么都执行,要么都不执行,它是一个不可分割的工作单位;数据库事务的 ACID 四大特性是事务的基础,了解了 ACID 是如何实现的,我们也就清除了事务的实现,接下来我们将依次介绍数据库是如何实现这四个特性的。 原子性 在学习事务时,经常有人会告诉你,事务就是一系列的操作,要么全部都执行,要都不执行,这其实就是对事务原子性的刻画;虽然事务具有原子性,但是原子性并不是只与事务有关系,它的身影在很多地方都会出现。 由于操作并不具有原子性,并且可以再分为多个操作,当这些操作出现错误或抛出异常时,整个操作就可能不会继续执行下去,而已经进行的操作造成的副作用就可能造成数据更新的丢失或者错误。 事务其实和一个操作没有什么太大的区别,它是一系列的数据库操作(可以理解为 SQL)的集合,如果事务不具备原子性,那么就没办法保证同一个事务中的所有操作都被执行或者未被执行了

asp.net中数据库事务管理

江枫思渺然 提交于 2019-11-28 05:10:56
英文搜索关键字: 文章地址:https://stackoverflow.com/questions/313199/sql-transactions-best-way-to-implement-in-asp-net 文章标题: Sql Transactions:ASP.Net中实现的最佳方式 Database transaction management in asp.net 示例代码: 首先,我不会在页面中处理事务逻辑。 编写某种类型的业务类来实现这一点 - 服务,数据实用程序类,您可以从ASP.Net中抽象出来。 接下来, 如果您使用的数据库可以订阅像SQL Server这样的分布式事务 ,您可以查看使用 TransactionScope 类(在System.Transactions命名空间中,引用System.Transactions.dll)。 using(TransactionScope scope = new TransactionScope()) { SaveObjectOne(); //these are just psuedo-code statements SaveObjectTwo(); //replace these with your code that saves various objs SaveObjectThree(); scope.Complete

Zookeeper高级

流过昼夜 提交于 2019-11-28 04:15:26
1.1. 一致性协议概述 前面已经讨论过,在分布式环境下,有很多不确定性因素,故障随时都回发生,也讲了 CAP 理论, BASE 理论 我们希望达到,在分布式环境下能搭建一个高可用的,且数据高一致性的服务,目标是这样,但 CAP 理论告诉我们要达到这样的理想环境是不可能的。这三者最多完全满足 2 个。 在这个前提下, P (分区容错性)是必然要满足的,因为毕竟是分布式,不能把所有的应用全放到一个服务器里面,这样服务器是吃不消的,而且也存在单点故障问题。 所以,只能从一致性和可用性中找平衡。 怎么个平衡法?在这种环境下出现了 BASE 理论: 即使无法做到强一致性,但分布式系统可以根据自己的业务特点,采用适当的方式来使系统达到最终的一致性; BASE 由 Basically Avaliable 基本可用、 Soft state 软状态、 Eventually consistent 最终一致性组成,一句话概括就是:平时系统要求是基本可用,除开成功失败,运行有可容忍的延迟状态,但是,无论如何经过一段时间的延迟后系统最终必须达成数据是一致的。 其实可能发现不管是 CAP 理论,还是 BASE 理论,他们都是理论,这些理论是需要算法来实现的,今天讲的 2PC 、 3PC 、 Paxos 算法, ZAB 算法就是干这事情。 所以今天要讲的这些的前提一定是分布式,解决的问题全部都是在分布式环境下

分布式事务atomikos使用

こ雲淡風輕ζ 提交于 2019-11-28 03:32:09
atomikos+jta+JdbcTemplate 依赖包(部分) <!-- Spring --> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-context</artifactId> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-web</artifactId> <version>4.1.5.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-orm</artifactId> <version>4.1.5.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-tx</artifactId> <version>4.1.5.RELEASE</version> </dependency> <dependency> <groupId>org

MVCC/分布式事务简介

自作多情 提交于 2019-11-28 01:03:14
之前我们学习了 RocksDB ,但这还只是一个最基础的存储引擎。如果想把它在生产环境中用起来,还需要解决很多问题: 如何从单机扩展到分布式? 如何实现事务,并对事务进行并发控制? 用户接口能不能高级一点?不要只有get/set? 这次我们就来解决这三个问题。 如何从单机扩展到分布式 分布式的一大意义就是把单机放不下的数据分散到多个节点上。我们不妨按照key将不同范围的key分成多个region:比如[a-c]是region1,[d-f]是region2。然后用这种方法存储: 这样实现了一个基本的load balancing。一个Region里所有的数据分散存储在多个replica上,每个tikv实例只会存一部分的region。 当然分布式之后我们是要支持节点的动态增减的,具体细节暂时忽略 如何实现事务,并对事务进行并发控制? 事务是数据库系统中一个很重要的概念。比如我们的数据库要拿给银行去用,然后银行要把账户A的100块钱转给账户B,就需要执行如下操作: if (A.balance>=100){ A.balance-=100; B.balance+=100; return(DB_OK); } else{ return(DB_ERROR); } 当然在数据库系统中事务是用SQL实现的。 在事务的执行过程中,整段事务需要保证要么全都不执行,要么全都执行完

Java分布式:分布式事务

本小妞迷上赌 提交于 2019-11-27 23:54:29
Java分布式:分布式事务 二阶段提交协议   两阶段提交其实比较简单,这边有两个资源提供准备和提交两个接口。   由于隔离性互斥的要求, 在事务执行过程中,所有的资源都是被锁定的,这种情况只适合执行时间确定的短事务。 但是为了保证分布式事务的一致性,大都是采用串行化的隔离级别来保证事务一致性,这样会降低系统的吞吐 。   但因为2PC的 协议成本比较高,又有全局锁的问题,性能会比较差 。 现在大家基本上不会采用这种强一致解决方案。 TCC协议   TCC名字的由来是其中包含了 try, confirm, cancel三个操作。   与两阶段提交相比,TCC位于业务服务层, 没有单独的准备阶段,Try操作可以灵活选择业务资源锁的粒度。TCC是通过最终一致性来解决系统性能问题的这个设计,对我们设计抉择有很大的启发。 有些时候系统的技术问题是可以通过业务建模的方式来解决的。   Saga   Saga是30年前的一篇数据库论文里提到的一个概念。在论文中 一个Saga事务就是一个长期运行的事务,这个事务是由多个本地事务所组成, 每个本地事务有相应的执行模块和补偿模块,当saga事务中的任意一个本地事务出错了, 可以通过调用相关事务对应的补偿方法恢复,达到事务的最终一致性 。 来源: https://www.cnblogs.com/MrSaver/p/11381205.html

深入消息中间件选型分析

醉酒当歌 提交于 2019-11-27 22:58:40
前言 消息队列中间件(简称消息中间件)是指利用高效可靠的消息传递机制进行与平台无关的数据交流,并基于数据通信来进行分布式系统的集成。通过提供消息传递和消息排队模型,它可以在分布式环境下提供应用解耦、弹性伸缩、冗余存储、流量削峰、异步通信、数据同步等等功能,其作为分布式系统架构中的一个重要组件,有着举足轻重的地位。 目前开源的消息中间件可谓是琳琅满目,能让大家耳熟能详的就有很多,比如ActiveMQ、RabbitMQ、Kafka、RocketMQ、ZeroMQ等。不管选择其中的哪一款,都会有用的不趁手的地方,毕竟不是为你量身定制的。有些大厂在长期的使用过程中积累了一定的经验,其消息队列的使用场景也相对稳定固化,或者目前市面上的消息中间件无法满足自身需求,并且也具备足够的精力和人力而选择自研来为自己量身打造一款消息中间件。但是绝大多数公司还是不会选择重复造轮子,那么选择一款合适自己的消息中间件显得尤为重要。就算是前者,那么在自研出稳定且可靠的相关产品之前还是会经历这样一个选型过程。 在整体架构中引入消息中间件,势必要考虑很多因素,比如成本及收益问题,怎么样才能达到最优的性价比?虽然消息中间件种类繁多,但是各自都有各自的侧重点,选择合适自己、扬长避短无疑是最好的方式。如果你对此感到无所适从,本文或许可以参考一二。 各类消息队列简述 ActiveMQ是Apache出品的

消息中间件选型分析从Kafka与RabbitMQ的对比来看全局

为君一笑 提交于 2019-11-27 22:58:27
原 消息中间件选型分析——从Kafka与RabbitMQ的对比来看全局https://blog.csdn.net/u013256816/article/details/79838428版权声明:本文为博主原创文章,未经博主朱小厮允许不得转载。 https://blog.csdn.net/u013256816/article/details/79838428 本文收录于InfoQ,未经允许不得转载。 一、前言 消息队列中间件(简称消息中间件)是指利用高效可靠的消息传递机制进行与平台无关的数据交流,并基于数据通信来进行分布式系统的集成。通过提供消息传递和消息排队模型,它可以在分布式环境下提供应用解耦、弹性伸缩、冗余存储、流量削峰、异步通信、数据同步等等功能,其作为分布式系统架构中的一个重要组件,有着举足轻重的地位。 目前开源的消息中间件可谓是琳琅满目,能让大家耳熟能详的就有很多,比如ActiveMQ、RabbitMQ、Kafka、RocketMQ、ZeroMQ等。不管选择其中的哪一款,都会有用的不趁手的地方,毕竟不是为你量身定制的。有些大厂在长期的使用过程中积累了一定的经验,其消息队列的使用场景也相对稳定固化,或者目前市面上的消息中间件无法满足自身需求,并且也具备足够的精力和人力而选择自研来为自己量身打造一款消息中间件。但是绝大多数公司还是不会选择重复造轮子