分布式事务

分布式事务解决方案――柔性事务与服务模式

匿名 (未验证) 提交于 2019-12-03 00:41:02
在我的博客中,介绍过很多关于分布式和事务的文章,在阅读本文之前,希望读者可以对这些基础知识有所了解,这里简单把之前的文章列举下,已经按照顺序排好,可按顺序阅读。 初识分布式系统 关于分布式一致性的探究 分布式系统的CAP理论(需要到博客中查看) 分布式系统的BASE理论(需要到博客中查看) Java中的事务――JDBC事务和JTA事务 Java中的事务――全局事务与本地事务 关于分布式事务、两阶段提交协议、三阶提交协议 深入理解分布式系统的2PC和3PC 这里简单总结下以前几篇文章,算是本文的背景知识。在分布式系统中,存在CAP理论,即可用性、数据一致性和分区容错性无法同时满足。所以,一个基于CAP的最终一致性理论BASE理论是目前解决分布式问题比较靠谱的。 在分布式系统中,是无法使用本地事务保证数据的一致性的。一种标准的分布式事务就是全局事务(DTP模型)。他是基于2PC来控制的。但是由于2PC自身就存在同步阻塞的问题,这也就导致全局事务效率很低。所以,这种全局事务并不适合解决大型网站的分布式事务问题。 柔性事务 在业内,主要用来解决分布式事务的方案是使用柔性事务。所谓柔性事务,相比较与数据库事务中的ACID这种刚性事务来说,柔性事务保证的是“基本可用,最终一致。”这其实就是基于BASE理论,保证数据的最终一致性。 虽然柔性事务并不像刚性事务那样完全遵循ACID,但是

常用的分布式事务解决方案

匿名 (未验证) 提交于 2019-12-03 00:37:01
关于分布式事务,工程领域主要讨论的是强一致性和最终一致性的解决方案。典型方案包括: 两阶段提交(2PC, Two-phase Commit)方案 eBay 事件队列方案 TCC 补偿模式 缓存数据最终一致性 一、一致性理论 分布式事务的目的是保障分库数据一致性,而跨库事务会遇到各种不可控制的问题,如个别节点永久性宕机,像单机事务一样的ACID是无法奢望的。另外,业界著名的CAP理论也告诉我们,对分布式系统,需要将数据一致性和系统可用性、分区容忍性放在天平上一起考虑。 两阶段提交协议(简称2PC)是实现分布式事务较为经典的方案,但2PC 的可扩展性很差,在分布式架构下应用代价较大,eBay 架构师Dan Pritchett 提出了BASE 理论,用于解决大规模分布式系统下的数据一致性问题。BASE 理论告诉我们:可以通过放弃系统在每个时刻的强一致性来换取系统的可扩展性。 1、CAP理论 在分布式系统中,一致性(Consistency)、可用性(Availability)和分区容忍性(Partition Tolerance)3 个要素最多只能同时满足两个,不可兼得。其中,分区容忍性又是不可或缺的。 <img src="https://pic4.zhimg.com/v2-8bb62ba9e7ce9f35199da032e17f9bb7_b.png" data-rawwidth=

事务面试题

匿名 (未验证) 提交于 2019-12-03 00:16:01
事务的特性ACID 事务提供了一种机制,可用来将一系列数据库更改归入一个逻辑操作。更改数据库后,所做的更改可以作为一个单元进行提交或取消。事务可确保遵循原子性、一致性、隔离性和持续性(ACID)这几种属性,以使数据能够正确地提交到数据库中。 1.脏读 一个事务正在对数据进行更新操作,但是更新还未提交,另一个事务这时也来操作这组数据,并且读取了前一个事务还未提交的数据,而前一个事务如果操作失败进行了回滚,后一个事务读取的就是错误的数据,这样就造成了脏读 2.不可重复读 3.幻读 第一个数据正在查询某一条数据,这时,另一个事务又插入了一条符合条件的数据,第一个事务在第二次查询符合同一条件的数据时,发现多了一条前一次查询时没有的数据,仿佛幻觉一样,这就是幻读 不可重复读是指在同一查询事务中多次进行,由于其他提交事务所做的修改和删除,每次返回不同的结果集,此时发生不可重复读 幻读是指在同一查询事务中多次进行,由于其他提交的事务所做的插入操作,每次返回不同的结果集,此时发生幻读表面上看,区别就在于不可重复读能看见其他事务提交的修改和删除,而幻读能看见其他事务提交的插入 1.default:(默认) 默认隔离级别,使用数据库默认的事务隔离级别 2.read_uncommitted:(读未提交) 这是事务最低的隔离级别,他允许另外一个事务可以看到这个事务未提交的数据,这种隔离级别会产生脏读

库存,订单,积分的分布式事务

匿名 (未验证) 提交于 2019-12-03 00:09:02
一个订单支付之后,我们需要做下面的步骤: 更改订单的状态为“已支付” 扣减商品库存 给会员增加积分 创建销售出库单通知仓库发货 减库存的业务实现 减库存可以采用 同步调用 (Feign的方式),也可以采用 异步调用 (RabbitMQ传递消息),我们这里采用同步调用,接下来我们分析为什么 如果我们采用异步调用的方式,减库存的这条消息发送到MQ就不管了,那么到底库存减成功了没有呢?这我们并不知道,如果库存不足,那么我们减库存失败,但是service的业务不会回滚,这个问题就是分布式事务问题,即跨服务的事务。减库存这个业务从订单微服务跨越到了商品微服务,而事务是由Spring来管理的,两套tomcat两套Spring,本身没有任何关联,但是却是一个事务,如果采用异步,这边的微服务执行失败另一边的微服务并不知道,破坏了事务的一致性,我们解决的方案是什么呢? 变异步调用为同步调用,如果一个微服务执行失败就会抛出异常,事务自然回滚(减库存的操作只能放在创建订单业务的最后,因为减库存执行失败事务自然回滚订单也不会创建成功,但是如果上来就先减库存,那玩意订单创建失败库存无法回滚),但是这种方案也不是最优的,因为我们没做优惠券功能,当我们做了优惠券功能,那计算优惠和减库存哪个放在最后呢?哪个放在最后都不可行,这时候就必须解决分布式事务问题了 解决分布式事务问题: 2PC(两阶段提交) : 第一阶段

分布式事务

[亡魂溺海] 提交于 2019-12-03 00:06:51
1、什么是分布式事务 分布式事务就是指事务的资源分别位于不同的分布式系统的不同节点之上的事务; 2、分布式事务产生的原因 2.1、数据库分库分表 在单库单表场景下,当业务数据量达到单库单表的极限时,就需要考虑分库分表,将之前的单库单表拆分成多库多表; 分库分表之后,原来在单个数据库上的事务操作,可能就变成跨多个数据库的操作,此时就需要使用分布式事务; 2.2、业务服务化 业务服务化即业务按照面向服务(SOA)的架构拆分整个网站系统; 比如互联网金融网站SOA拆分,分离出交易系统、账务系统、清算系统等,交易系统负责交易管理和记录交易明细,账务系统负责维护用户余额,所有的业务操作都以服务的方式对外发布; 一笔金融交易操作需要同时记录交易明细和完成用户余额的转账,此时需要分别调用交易系统的交易明细服务和账务系统的用户余额服务,这种跨应用、跨服务的操作需要使用分布式事务才能保证金融数据的一致性; 3、分布式事务原理简介 数据库本地事务(ACID) 说到数据库事务就不得不说,数据库事务中的四大特性 ACID: A:原子性(Atomicity),一个事务(transaction)中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。 事务在执行过程中发生错误,会被回滚(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。 就像你买东西要么交钱收货一起都执行

分布式系统一致性问题解决实战(阿里)

匿名 (未验证) 提交于 2019-12-02 23:57:01
分布式系统一致性问题解决实战 一、背景及问题描述 业务背景: 商户提交表单数据至旺铺(deco项目,以下皆称为deco),deco需要接入poi系统进行装修内容的人工审核,详细流程见下图。 问题: 店铺装修审核状态在deco系统和poi系统之间不一致,下图中1,2,3步提交流程会出现同一次提交审核流在deco系统中的装修状态为未装修,而在poi系统为审核中。同样在4,5,6步骤的审核回调过程也会有同类的状态不一致问题。两块问题都是同一技术问题,本文只以1,2,3步提交过程为例进行分析解决。 二、问题分析 1. 关系型数据事务在分布式系统中的问题 从业务中抽离出来,问题的核心原因可用下图流程模型来描述。 系统A的某个业务功能包含两步操作,第一步把数据写入A系统本地库,第二步远程调用系统B,这两步操作在A系统用一个数据库事务来包装。伪代码如下: $db->begain(); // 第一步操作本地数据库 $res = $db->update($sql_a); if (!$res) { $db->rollback(); return; } // 第二步远程调用B系统 $res = $http_request->get($url_b); if ('success' != $res) { $db->rollback(); return; } $db->commit(); 第一步有两种结果成功

系统学习消息队列分享(五) 如何利用事务消息实现分布式事务?

匿名 (未验证) 提交于 2019-12-02 23:56:01
一说起事务,你可能自然会联想到数据库。的确,我们日常使用事务的场景,绝大部分都是在操作数据库的时候。像 MySQL、Oracle 这些主流的关系型数据库,也都提供了完整的事务实现。那消息队列为什么也需要事务呢? 其实很多场景下,我们“发消息”这个过程,目的往往是通知另外一个系统或者模块去更新数据,消息队列中的“事务”,主要解决的是消息生产者和消息消费者的数据一致性问题。 依然拿我们熟悉的电商来举个例子。一般来说,用户在电商 APP 上购物时,先把商品加到购物车里,然后几件商品一起下单,最后支付,完成购物流程,就可以愉快地等待收货了。 这个过程中有一个需要用到消息队列的步骤,订单系统创建订单后,发消息给购物车系统,将已下单的商品从购物车中删除。因为从购物车删除已下单商品这个步骤,并不是用户下单支付这个主要流程中必需的步骤,使用消息队列来异步清理购物车是更加合理的设计。 对于订单系统来说,它创建订单的过程中实际上执行了 2 个步骤的操作: 在订单库中插入一条订单数据,创建订单; 发消息给消息队列,消息的内容就是刚刚创建的订单。 购物车系统订阅相应的主题,接收订单创建的消息,然后清理购物车,在购物车中删除订单中的商品。 在分布式系统中,上面提到的这些步骤,任何一个步骤都有可能失败,如果不做任何处理,那就有可能出现订单数据与购物车数据不一致的情况,比如说: 创建了订单,没有清理购物车;

分布式事务框架.NetCore CAP总结

删除回忆录丶 提交于 2019-12-02 23:43:56
来自CAP原作者yang-xiaodong的原理图: 本文撰写者:cmliu,部分内容引用自官方文档,部分内容待更新# .NetCore CAP # 1,简介 CAP 是一个遵循 .NET Standard 标准库的C#库,用来处理分布式事务以及提供EventBus的功能,她具有轻量级,高性能,易使用等特点。 目前 CAP 使用的是 .NET Standard 1.6 的标准进行开发,目前最新预览版本已经支持 .NET Standard 2.0 ## CAP 的应用场景主要有以下两个: ### 分布式事务中的最终一致性(异步确保)的方案。 >分布式事务是在分布式系统中不可避免的一个硬性需求,CAP 没有采用两阶段提交(2PC)这种事务机制 >而是采用的 本地消息表+MQ 这种经典的实现方式,这种方式又叫做 异步确保。 ### 具有高可用性的 EventBus(事件总线)。 >CAP 实现了 EventBus 中的发布/订阅,它具有 EventBus 的所有功能。 >也就是说你可以像使用 EventBus 一样来使用 CAP,另外 CAP 的 EventBus 是具有高可用性的, CAP 借助于本地消息表来对 EventBus 中的消息进行了持久化 >这样可以保证 EventBus 发出的消息是可靠的,当消息队列出现宕机或者连接失败的情况时,消息也不会丢失 #####

分布式事务二TCC

淺唱寂寞╮ 提交于 2019-12-02 23:24:01
明天再整理 分布式事务解决方案之TCC 4.1.什么是TCC事务 TCC是Try、Confirm、Cancel三个词语的缩写,TCC要求每个分支事务实现三个操作:预处理Try、确认Confirm、撤销Cancel。Try操作做业务检查及资源预留,Confirm做业务确认操作,Cancel实现一个与Try相反的操作即回滚操作。TM首先发起所有的分支事务的try操作,任何一个分支事务的try操作执行失败,TM将会发起所有分支事务的Cancel操作,若try操作全部成功,TM将会发起所有分支事务的Confirm操作,其中Confirm/Cancel操作若执行失败,TM会进行重试。 分支事务失败的情况: TCC分为三个阶段: 1. Try 阶段是做业务检查(一致性)及资源预留(隔离),此阶段仅是一个初步操作,它和后续的Confirm 一起才能真正构成一个完整的业务逻辑。 2. Confirm 阶段是做确认提交,Try阶段所有分支事务执行成功后开始执行 Confirm。通常情况下,采用TCC则认为 Confirm阶段是不会出错的。即:只要Try成功,Confirm一定成功。若Confirm阶段真的出错了,需引入重试机制或人工处理。 3. Cancel 阶段是在业务执行错误需要回滚的状态下执行分支事务的业务取消,预留资源释放。通常情况下,采用TCC则认为Cancel阶段也是一定成功的

分布式系统一致性保障方案总结

匿名 (未验证) 提交于 2019-12-02 22:56:40
群里经常卧虎藏龙,转载一篇百度大牛,投稿原创文章,大家交流学习 ,欢迎更多朋友投稿,发布原创文章和干货和大家分享交流。 引言 在互联网系统中,理想的情况下,肯定是希望系统能够同时满足“一致性”、“可用性”和“分区容忍性”。 但是基于熟悉的CAP定律也好,还是BASE理论, 我们知道,在实际情况中是不可能实现的。而在金融领域,一致性是最为关注的特性,任何情况下都必须满足一致性。关于CAP定律和BASE理论,本文不再介绍,有兴趣的同学可以自行百度一下。本文重点来阐述下关于一致性的方案,包括强一致性和最终一致性。 而在互联网领域, 很多情况下都是牺牲强一致性,来达到高可用性, ϵ 统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。 数据库本地事务 数据库事务肯定是强一致性的方案,而且是一致性最简单的方案,因为一致性是数据库的事务来保证的,业务层不需要关心细节。比较典型的应用是在返现场景下,针对带有返现的交易的退款,需要一次性退两笔交易单,采用的就是通过数据库本地事务来完成的。具体如下: 用户A花了100元购买商户B的商品,购买结束后返现给用户A 2元。 这是两笔交易,原始交易是100元,返现交易是2元。 那么发生退款时,需要保证两笔交易同时都退款。这个就是直接采用数据库本地事务实现的,即一次退款请求,两笔交易同时退款。 总结: 数据库事务的优点是简单