Spark运行架构(主要参考厦门大学林子雨课件)
一.基本概念 RDD:是弹性分布式数据集(Resilient Distributed Dataset)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型; DAG:是Directed Acyclic Graph(有向无环图)的简称,反映RDD之间的依赖关系; Executor:是运行在工作节点(Worker Node)上的一个进程,负责运行任务,并为应用程序存储数据; 应用:用户编写的Spark应用程序; 任务:运行在Executor上的工作单元; 作业:一个作业包含多个RDD及作用于相应RDD上的各种操作; 阶段:是作业的基本调度单位,一个作业会分为多组任务,每组任务被称为“阶段”,或者也被称为“任务集”。 二.架构设计 Spark运行架构包括集群资源管理器(Cluster Manager)、运行作业任务的工作节点(Worker Node)、每个应用的任务控制节点(Driver)和每个工作节点上负责具体任务的执行进程(Executor)。其中,集群资源管理器可以是Spark自带的资源管理器,也可以是YARN或Mesos等资源管理框架。 与Hadoop MapReduce计算框架相比,Spark所采用的Executor有两个优点:一是利用多线程来执行具体的任务(Hadoop MapReduce采用的是进程模型),减少任务的启动开销