快速排序,归并排序,堆排序的数组和单链表实现
原文链接: https://www.cnblogs.com/DarrenChan/p/8807112.html 这三个排序的时间复杂度都是O(nlogn),所以这里放到一起说。 回到顶部 1. 快速排序 # 快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 步骤为: 从数列中挑出一个元素,称为"基准"(pivot), 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。 递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。 最优时间复杂度:O(nlogn) 最坏时间复杂度:O(n2) 稳定性:不稳定 从一开始快速排序平均需要花费O(n log n)时间的描述并不明显