递归与迭代
( 递推算法的首要问题是得到相邻的数据项间的关系(即递推关系)。递推算法避开了求通项公项的麻烦,把一个复杂的问题的求解,分解成了连续的若干步简单运算。一般说来,可以将递推算法看成是一种特殊的迭代算法。) 递归(调用本身)与迭代(新值换旧值)都是基于控制结构:迭代用重复结构,而递归用选择结构。递归与迭代都涉及重复:迭代显式使用重复结构,而递归通过重复函数调用实现重复。递归与迭代都涉及终止测试:迭代在循环条件失败时终止,递归在遇到基本情况时终止。使用计数器控制重复的迭代和递归都逐渐到达终止点:迭代一直修改计数器,直到计数器值使循环条件失败;递归不断产生最初问题的简化副本,直到达到基本情况。迭代和递归过程都可以无限进行:如果循环条件测试永远不变成false,则迭代发生无限循环;如果递归永远无法回推到基本情况,则发生无穷递归。 递归有许多缺点,它重复调用机制,因此重复函数调用的开销很大,将占用很长的处理器时间和大量的内存空间。每次递归调用都要生成函数的另一个副本(实际上只是函数变量的另一个副本).从而消耗大量内存空间。迭代通常发生在函数内,因此没有重复调用函数和多余内存赋值的开销。那么,为什么选择递归呢? --------------------------------------------------------------------------- 摘要:在算法的分析与设计中