PSO算法
1.简介 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。 2.基本思想 粒子群算法是模拟群体智能所建立起来的一种优化算法,粒子群算法可以用鸟类在一个空间内随机觅食为例,所有的鸟都不知道食物具体在哪里,但是他们知道大概距离多远,最简单有效的方法就是搜寻目前离食物最近的鸟的周围区域。对粒子群优化算法操作的一个简单解释如下:每一个粒子都代表了当前优化任务的一个可能解决方案。在每次迭代过程中,每个粒子都会朝着自己的最优解的方向加速,也会朝着种群中任何粒子迄今为止发现的全局最佳位置的方向加速。这意味着,如果一个粒子发现了一个更好的解,所有其他粒子都会靠近它,在这个过程中不断地搜索最优解。可以总结出粒子群算法地三条简单规则:(1)飞离最近的个体,以避免碰撞;(2)飞向目标;(3)飞向群体的中心。 假设存在一个维度为S的搜索空间,由m个粒子组成粒子种群,其中第i个粒子用一个S维的向量表示,具体为Xi=(xi1,xi2,…,xiS)