cudnn

Issues Running Tensorflow

╄→гoц情女王★ 提交于 2020-01-09 12:04:47
问题 I'm currently pursuing a research project on my college's campus which requires me to use TensorFlow. I've installed Visual Studio 2015, CUDA Toolkit, and cuDNN. I have Python 3.5.2 and I've installed TensorFlow in Anaconda (successfully, according to the prompt). The PC is running Windows 7 with an Nvidia Quadro K420. The CPU version works, but upon using the GPU version I get these errors: >>> import tensorflow as tf Traceback (most recent call last): File "C:\Anaconda3\lib\site-packages

Issues Running Tensorflow

只愿长相守 提交于 2020-01-09 12:04:47
问题 I'm currently pursuing a research project on my college's campus which requires me to use TensorFlow. I've installed Visual Studio 2015, CUDA Toolkit, and cuDNN. I have Python 3.5.2 and I've installed TensorFlow in Anaconda (successfully, according to the prompt). The PC is running Windows 7 with an Nvidia Quadro K420. The CPU version works, but upon using the GPU version I get these errors: >>> import tensorflow as tf Traceback (most recent call last): File "C:\Anaconda3\lib\site-packages

Ubuntu下深度学习环境安装全套--NVIDIA驱动,Cuda,,cudnn, Anconda, Pycharm, Tensorrt安装

杀马特。学长 韩版系。学妹 提交于 2020-01-08 19:19:16
上周末由于某些莫名的原因重装了系统,又重新捣鼓了一次深度学习环境全套安装~~ 吐血~~做个记录,方便下次继续重装系统又要安装。。。。。 本次所有安装基于Ubuntu16.04系统下安装,安装好后的环境是 nvidia-410, Cuda10.0.130,cudnn7.6.5,Anconda5.1(Python3.6.4), Tensorrt7.0.0.11。 安装NVIDIA驱动 卸载干净所有安装过的nvidia驱动 sudo apt-get remove --purge nvidia-* 执行以下命令添加驱动源 sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt-get update Ctrl+Alt+F1切换到tty1执行 sudo service lightdm stop sudo apt-get install nvidia-410 nvidia-settings nvidia-prime sudo nvidia-xconfig sudo update-initramfs -u sudo reboot 上面 sudo apt-get install nvidia-410 nvidia-settings nvidia-prime 这条语句表示我安装的nvidia驱动版本是410(cuda10.0需要 nvidia

Cuda, CuDNN installed But Tensorflow can't use the GPU

岁酱吖の 提交于 2020-01-06 18:31:44
问题 My system is Ubuntu 14.04 on EC2.: nvidia-smi Sun Oct 2 13:35:28 2016 +------------------------------------------------------+ | NVIDIA-SMI 352.63 Driver Version: 352.63 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GRID K520 Off | 0000:00:03.0

Which NVIDIA cuDNN release type for TensorFlow on Ubuntu 16.04 [closed]

|▌冷眼眸甩不掉的悲伤 提交于 2020-01-03 16:47:16
问题 Closed. This question is off-topic. It is not currently accepting answers. Want to improve this question? Update the question so it's on-topic for Stack Overflow. Closed last year . According to TensorFlow 1.5 installation instructions for Ubuntu 16.04, you need to install cuDNN 7.0 but they don't mention exactly what should be installed: cuDNN v7.0. For details, see NVIDIA's documentation. Ensure that you create the CUDA_HOME environment variable as described in the NVIDIA documentation.

Ubuntu 安装cuDNN

这一生的挚爱 提交于 2020-01-03 03:50:43
官方网址 1.1.下载: libcudnn7-doc_7.4.2.24-1+cuda10.0_amd64.deb cudnn-10.0-linux-x64-v7.5.0.56.tgz 1.2 .解压cudnn-10.0-linux-x64-v7.5.0.56.tgz: tar -xzvf cudnn-10.0-linux-x64-v7.5.0.56.tgz 执行: $ sudo cp cuda/include/cudnn.h /usr/local/cuda/include $ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 $ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* 1.3. dpkg -i libcudnn7-doc_7.4.2.24-1+cuda10.0_amd64.deb 1.4.验证: cp -r /usr/src/cudnn_samples_v7/ $HOME cd $HOME /cudnn_samples_v7/mnistCUDNN make clean && make ./mnistCUDNN If cuDNN is properly installed and running on your

How to know which cuDNN version one should use?

纵饮孤独 提交于 2020-01-01 02:44:07
问题 I plan to use cuDNN on Linux: how to know which cuDNN version I need? Should I always use the most recent one? E.g. choosing the right CUDA version depends on the Nvidia driver version. I wonder if there is similar constrains for choosing the cuDNN (given that it may give some fancy error messages later on I'd prefer to know before I try). 回答1: You should use whichever is the latest version of cuDNN supported by your application and platform, since that will have the most bug fixes and

使用TensorFlow玩GTA5

社会主义新天地 提交于 2019-12-31 01:34:17
小白学TensorFlow(一) tensorflow安装 在安装之前,您必须选择以下类型的TensorFlow之一来安装: TensorFlow仅支持CPU支​​持。如果您的系统没有NVIDIA®GPU,则必须安装此版本。请注意,此版本的TensorFlow通常会更容易安装(通常在5或10分钟内),因此即使您有NVIDIA GPU,建议先安装此版本。 TensorFlow支持GPU。TensorFlow程序通常在GPU上的运行速度明显高于CPU。因此,如果您的系统具有满足以下所示先决条件的NVIDIA®GPU,并且您需要运行性能关键型应用程序,则应最终安装此版本。 运行TensorFlow与GPU支持的要求 如果您使用本指南中描述的机制之一来安装具有GPU支持的TensorFlow,则系统上必须安装以下NVIDIA软件: CUDA®工具包8.0。有关详细信息,请参阅 NVIDIA的文档 确保将相关的Cuda路径名附加到%PATH% 环境变量中,如NVIDIA文档中所述。 与CUDA Toolkit 8.0相关的NVIDIA驱动程序。 cuDNN v6或v6.1。有关详细信息,请参阅 NVIDIA的文档 。请注意,cuDNN通常安装在与其他CUDA DLL不同的位置。记得将cuDNN DLL的目录添加到 %PATH% 环境变量中。 具有CUDA Compute Capability

Windows安装TensorFlow

烈酒焚心 提交于 2019-12-31 01:34:03
原生Windows安装TensorFlow 0.12方法 标签: tensorflow windows 2016-12-04 11:23 37737人阅读 评论 (24) 收藏 举报 分类: TensorFlow 版权声明:本文为博主原创文章,未经博主允许不得转载。 2016年11月29日,TF官方宣布0.12版tensorflow支持原生windows操作系统,不在需要通过Docker进行安装。作为一个tf初学者,也是windows重度依赖用户,通过在墙里墙外各种搜索,终于找到了一种可行的安装方法。现予以总结,供同行参考。 博主机器配置: [html] view plain copy OS:Window 7 64bit CPU:Intel i7-2600K 内存:8G 显卡:Nvidia GeForce GTX 560 (有人推荐使用 Windows PowerShell 代替 CMD,所以下面一、二、三、四步均在Power Shell下执行,“开始”->“附件”->“Windows Power Shell”->“Windows Power Shell”) 一、安装Python 1、通过Pip在Windows上安装Python TensorFlow在Windows上只支持64位Python3.5,可以通过 Python 3.5 from python.org 或 Python 3

win10 下的 CUDA10.0 +CUDNN + tensorflow + opencv 环境部署

北城以北 提交于 2019-12-31 01:33:48
1 CUDA 10.0 安装   win10 下的cuda 安装是非常简单的,和其他程序安装没什么区别,现在 tensorflow 1.13 版本以上 支持 CUDA 10.0 ,这里选取了CUDA 10.0+ CUDNN 7.5 +tensorflow 1.13 + opencv 3.4.0   (1)安装 nvidia 的驱动, 在 https://www.geforce.cn/drivers 选取与显卡对应的驱动 安装(这里选择了gtx750ti 417 版本)   (2)在 https://developer.nvidia.com/cuda-10.0-download-archive 选择对应的 CUDA 下载        (3)运行安装文件 , 选择的自定义安装 会显示 所有 组件, 一般情况下 只要选择安装 cuda 就行( 安装 驱动程序时,剩下的组件一般都是安装好了的)   (4)等待安装完成,安装成功后 在 命令行输入 nvcc -V 会显示版本信息 则安装成功。如果没有 查看系统环境变量 的 path 中是否有CUDA 的相关目录       例如 ,没有则添加。 2 CUDNN 7.5 安装   (1)在 网址 https://developer.nvidia.com/rdp/cudnn-archive (需登录) 中选取 Download cuDNN v7