cudnn

TensorFlow on Windows: “Couldn't open CUDA library cudnn64_5.dll”

◇◆丶佛笑我妖孽 提交于 2019-11-30 11:31:55
Tensorflow just released windows support. I installed the gpu version and CUDA 8.0 and python 3.5. However, after I import the tensorflow I got the following error: >>> import tensorflow I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\dso_loader.cc:128] successfully opened CUDA library cublas64_80.dll locally I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\dso_loader.cc:119] Couldn't open CUDA library cudnn64_5.dll I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor

ImportError: cannot import name 'abs'

元气小坏坏 提交于 2019-11-30 08:27:08
问题 I got problem while doing object detection using tensorflow-gpu I was follwing the youtube tutorials :https://www.youtube.com/watch?v=Rgpfk6eYxJA I'm trying to detect object using tensorflow-gpu with virtual environment. I added python, cuda, tensorflow to system environment variables, and also did make training models with labels. I converted xml labels to csv using xml_to_csv.py. The problem is when I try to generate tfrecord using generate_tfrecord.py, that error appear. Please help Here's

Ubuntu18.04安装测试TensorFlow-GPU

主宰稳场 提交于 2019-11-30 02:49:55
1 安装Ubuntu18.04.03 lts spt@spt-ts:~$ lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 18.04.3 LTS Release: 18.04 Codename: bionic spt@spt-ts:~$ df -ah Filesystem Size Used Avail Use% Mounted on udev 3.9G 0 3.9G 0% /dev tmpfs 794M 1.9M 792M 1% /run /dev/sda6 111G 5.5G 100G 6% / /dev/sda1 454M 112M 315M 27% /boot /dev/sdb1 916G 142M 870G 1% /home # swap设置了6GB 找了一个台式机,全盘格式化后,全新安装的Ubuntu18.04.3 LTS 2 安装NVIDIA显卡驱动 spt@spt-ts:~$ lspci | grep -i vga 01:00.0 VGA compatible controller: NVIDIA Corporation GM206 [GeForce GTX 950] (rev a1) 显卡:gtx 950 驱动和CUDA对应版本好要求:

could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR

左心房为你撑大大i 提交于 2019-11-30 02:03:00
问题 I installed tensorflow 1.0.1 GPU version on my Macbook Pro with GeForce GT 750M. Also installed CUDA 8.0.71 and cuDNN 5.1. I am running a tf code that works fine with non CPU tensorflow but on GPU version, I get this error (once a while it works too): name: GeForce GT 750M major: 3 minor: 0 memoryClockRate (GHz) 0.9255 pciBusID 0000:01:00.0 Total memory: 2.00GiB Free memory: 67.48MiB I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 I tensorflow/core/common_runtime/gpu/gpu_device

CuDNN library compatibility error after loading model weights

北城余情 提交于 2019-11-30 01:42:07
问题 I am trying to load NSynth weights and I am using tf version 1.7.0 from magenta.models.nsynth import utils from magenta.models.nsynth.wavenet import fastgen def wavenet_encode(file_path): # Load the model weights. checkpoint_path = './wavenet-ckpt/model.ckpt-200000' # Load and downsample the audio. neural_sample_rate = 16000 audio = utils.load_audio(file_path, sample_length=400000, sr=neural_sample_rate) encoding = fastgen.encode(audio, checkpoint_path, len(audio)) # Reshape to a single sound

ubuntu 自动切换cudnn python 版本

你说的曾经没有我的故事 提交于 2019-11-29 20:48:30
需要文件夹cuda8.0-cudnn5, cuda8.0-cudnn6 switch_cudnn.sh #usr/bin/env sh VERSION=$1 cd /media/data_1/Yang/software_install/cudnn/cuda8.0-cudnn${VERSION} sudo cp ./include/cudnn.h /usr/local/cuda/include sudo cp ./lib64/lib* /usr/local/cuda/lib64/ ##复制动态链接库 cd /usr/local/cuda/lib64/ sudo ln -snf libcudnn.so.${VERSION} libcudnn.so ##强制建立软链接 echo 'cudnn.__version__='${VERSION} 运行: ./switch_cudnn.sh 5 ./switch_cudnn.sh 6 switch_python.sh #usr/bin/env sh VERSION=$1 sudo ln -snf /usr/bin/python${VERSION} /usr/bin/python echo 'python.__version__='${VERSION} 来源: https://www.cnblogs.com/yanghailin/p

TensorFlow on Windows: “Couldn't open CUDA library cudnn64_5.dll”

爷,独闯天下 提交于 2019-11-29 17:16:27
问题 Tensorflow just released windows support. I installed the gpu version and CUDA 8.0 and python 3.5. However, after I import the tensorflow I got the following error: >>> import tensorflow I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\dso_loader.cc:128] successfully opened CUDA library cublas64_80.dll locally I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\dso_loader.cc:119] Couldn't open CUDA library

ubuntu16.04安装cuDNN

时间秒杀一切 提交于 2019-11-29 16:06:46
cudnn的安装非常简单 (1)下载安装文件 按需求下载 cudnn的安装文件 : https://developer.nvidia.com/rdp/cudnn-archive Tar File的下载如下图所示,选择红方框中的选项进行下载 下载的是cudnn-*tgz的压缩包时,按下方指令进行安装: 首先解压缩下的cudnn压缩包文件 tar -xzvf cudnn-9.0-linux-x64-v7.tgz 执行安装,其实就是拷贝头文件和库文件并给予权限 sudo cp cuda/include/cudnn.h /usr/local/cuda/include sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* (2)验证安装是否成功 cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 如果显示 #define CUDNN_MAJOR 7 #define CUDNN_MINOR 6 #define CUDNN_PATCHLEVEL 2 -- #define CUDNN_VERSION (CUDNN_MAJOR *

编译caffe-gpu-cuda及cudnn-tar 下载地址

和自甴很熟 提交于 2019-11-29 11:17:25
y下载 https://github.com/BVLC/caffe https://github.com/BVLC/caffe/archive/master.zip gcc   caffe安装 有2个问题 : 1,镜像系统类型,版本要求 2,是否使用cudnn(gpu) caffe要调用cudnn部分文件编译 (如用,cuda cudnn版本要求) ubuntu1604-py35-nvidia-tensorflow1.14-cuda9.0-cudnn7.05 nvcc 2 nvcc -V 3 wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo 4 yum install wget 5 wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo 6 wget -P /etc/yum.repos.d/ http://mirrors.aliyun.com/repo/epel-7.repo 7 yum clean all 8 yum makecache 9 yum install protobuf-devel leveldb-devel snappy

Ubuntu 16.04 安装CUDA9.0和cuDNN7.4.1(亲测成功)

爷,独闯天下 提交于 2019-11-29 08:22:23
目录 一、安装CUDA 二、下载cuDNN 三、设置环境变量 四、查看安装是否成功 一、安装CUDA 1.博主这里选择 9.0 版本, CUDA历代版本 下载的网址为: https://developer.nvidia.com/cuda-toolkit-archive 2.如下选择 3.执行指令: sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb sudo apt-key add /var/cuda-repo-9-0-local/7fa2af80.pub sudo apt-get update sudo apt-get install cuda 二、下载cuDNN 1.网址: https://developer.nvidia.com/rdp/cudnn-archive 2.选择 7.4.1 的 cuDNN Library for Linux 下载 3.解压: sudo tar -zxvf cudnn-9.0-linux-x64-v7.4.1.5.tgz 4.复制 cuDNN 的文件到已经安装好的目录中 sudo cp cuda/include/cudnn.h /usr/local/cuda/include sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64