Matrix-vector multiplication in CUDA: benchmarking & performance
I'm updating my question with some new benchmarking results (I also reformulated the question to be more specific and I updated the code)... I implemented a kernel for matrix-vector multiplication in CUDA C following the CUDA C Programming Guide using shared memory. Let me first present some benchmarking results which I did on a Jetson TK1 (GPU: Tegra K1, compute capability 3.2) and a comparison with cuBLAS: Here I guess cuBLAS does some magic since it seems that its execution is not affected by the number of columns of A , which, in turn, implies that there is some sort of parallelisation