ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks
论文《ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks》的完整翻译,如有翻译不当之处敬请评论指出,蟹蟹!(2019-10-17) 作者:Qilong Wang1, Banggu Wu1, Pengfei Zhu1, Peihua Li2, Wangmeng Zuo3, Qinghua Hu1 发表:暂未知 代码:https://github.com/BangguWu/ECANet 摘要 通道注意力在改善深度卷积神经网络(CNNs)性能方面具有巨大的潜力。然而,大多数现有的方法致力于开发更复杂的注意力模块,以获得更好的性能,不可避免地增加了计算负担。为了克服性能与复杂度权衡的悖论,本文尝试研究一种用于提高深度CNNs性能的超轻量级注意模块。特别地,我们提出了一个有效的通道注意(ECA)模块,它只涉及k (k<=9)参数,但带来了明显的性能增益。通过回顾SENet中的通道注意模块,我们实证地证明了避免降维和适当的跨通道交互对于学习有效的通道注意是重要的。因此,我们提出了一种无降维的局部跨通道交互策略,该策略可以通过快速一维卷积有效地实现。此外,我们开发了一个通道维数的函数来自适应地确定一维卷积的核大小,它代表了局域交叉通道相互作用的覆盖范围