荐读 Meta-Learning in Neural Networks: A survey
0 前言 Meta Learning是深度学习领域近年来最火的研究方向之一,在这一两年内涌现出了大量的paper,可谓百花齐放!相信有很多想入坑的同学很想了解Meta Learning的整个研究概况及进展,却苦于找不到一篇好的综述。那么现在机会来了,最近来自爱丁堡大学的 Timothy M. Hospedales homepages.inf.ed.ac.uk 老师主笔撰写了一篇非常全面有深度的综述: Meta-Learning in Neural Networks: A Survey arxiv.org 在这篇综述里,作者对Meta Learning这个领域进行了全新系统性进行分类,并且充分分析了Meta Learning在不同应用上的研究进展。下面我们对这篇综述进行一定的解读,希望对感兴趣的朋友有帮助! 1 Meta Learning如何定义? Meta Learning,也称为Learning to Learn,即学会学习,顾名思义就是学会某种学习的技巧,从而在新的任务task上可以学的又快又好。这种学习的技巧我们可以称为Meta-knowledge。Meta Learning和传统的机器学习最大的不同便在于Meta Learning是task level的,即每一个task都可以认为是meta learning的样本。基于这样的定义,我们可以得到Meta