axis

tf.argmax()解析

可紊 提交于 2019-12-09 23:41:50
tf.argmax(input,axis)根据axis取值的不同返回每行或者每列最大值的索引。代码如下: import tensorflow as tfimport numpy as npsess=tf.Session()a = np.array([[1, 2, 3], [2, 3, 4], [5, 4, 3], [8, 7, 2]])a0=tf.argmax(a,axis=0)a1=tf.argmax(a,axis=1)a0=sess.run(a0)a1=sess.run(a1)b = np.array([[[1, 2, 3,5], [2, 3, 4,8], [5, 1,4, 3]], [[13 ,4, 3,5], [2,13, 4,8],[8, 4, 7, 32]] ])b0=tf.argmax(b,axis=0)b1=tf.argmax(b,axis=1)b2=tf.argmax(b,axis=2)b0=sess.run(b0)b1=sess.run(b1)b2=sess.run(b2)print('矩阵为二维度状况:\n')print('first dimension=',a0)print('second dimension=',a1)print('矩阵为三个维度状况:\n')print('first dimension=',b0)print('second

统计学习方法与Python实现(二)——k近邻法

放肆的年华 提交于 2019-12-09 20:20:40
统计学习方法与Python实现(二)——k近邻法   iwehdio的博客园: https://www.cnblogs.com/iwehdio/ 1、定义   k近邻法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决的方式进行预测。k近邻法不具有显式的学习过程,而实际上是利用训练数据集对特征空间进行划分,并作为其分类的模型。k近邻法的三个基本要素是 k值的选择、距离度量和分类决策规则。   k近邻法的模型是将特征空间划分成一些称为单元的子空间,并且每个单元内的点所属的类都被该单元的类标记所唯一确定。   单元的划分和类标记的确定需要首先对距离进行度量。特征空间中两个实例点的距离是它们之间相似程度的反映。对于n维实数向量的特征空间Rn,两向量xi和xj之间的Lp距离定义为:   当p=1时,称为曼哈顿距离:   当p=2时,称为欧氏距离:   当p=∞时,取值为各个坐标距离的最大值:   对于k值的选择,如果选择较小的k值,学习的近似误差会减小,但估计误差会增大,对噪声敏感。k值的减小就意味着整体模型变得复杂,容易发生过拟合。如果选择较大的k值,可以减少学习的估计误差,但缺点是学习的近似误差会增大。k值的增大 就意味着整体的模型变得简单。   在应用中,k值一般取一个较小的数值,并通过交叉验证法来确定最优的k值。  

Custom ggplot2 axis and label formatting

你。 提交于 2019-12-09 14:59:56
问题 I'm trying to draw labels which look informative, clear and tidy. I was following example and raised one more question about label and axis formatting. For example, I have sales data which includes Brand, Categories and Expenditure in EUR. When sum of EUR is big (millions or more) labels look really hard to read and not informative. As a result, x-axis is in Scientific notation and also looks really uncleanly. I've manage to format labels in custom way: it shows Eur in thousands. geom_text

Any workaround for ignoring unexpected elements in Apache Axis 1.4?

依然范特西╮ 提交于 2019-12-09 14:20:24
问题 The problem was asked before "Apache AXIS Ignore/Skip additional element while parsing" in 2012 for Apache Axis 2. Is there no workaround yet for Axis 1.4? Problem Definition For instance; 1- We have a soap response definition('ResponseGetCustomerInfo') in our wsdl while development[with Axis 1.4 ]: ... <xs:element name="ResponseGetCustomerInfo"> <xs:complexType> <xs:sequence> <xs:element ref="ns1:CustomerID"/> <xs:element ref="ns1:CustomerUsername"/> </xs:sequence> </xs:complexType> </xs

axis1 axis2 使用总结

本秂侑毒 提交于 2019-12-09 12:48:03
-----------------------------------------axis1.4------------------------------------------------- 1. 生成java对象 1.1 设置环境变量 AXIS_HOME=D:\OpenSource\axis\axis-1_4 AXIS_LIB=%AXIS_HOME%\lib AXISCLASSPATH=%AXIS_LIB%\axis.jar;%AXIS_LIB%\commons-discovery-0.2.jar;%AXIS_LIB%\commons-logging-1.0.4.jar;%AXIS_LIB%\jaxrpc.jar;%AXIS_LIB%\saaj.jar;%AXIS_LIB%\log4j-1.2.8.jar;%AXIS_LIB%\wsdl4j-1.5.1.jar;%AXIS_LIB%\xml-apis.jar;%AXIS_LIB%\xercesImpl.jar CLASSPATH=%AXISCLASSPATH%;. 1.2 执行命令行 java org.apache.axis.wsdl.WSDL2Java ***/services/***?wsdl 2. web service 调用 public class TermSvrUtil { private static

How to enforce an Axis Client to use TLSv1.2 protocol

|▌冷眼眸甩不掉的悲伤 提交于 2019-12-09 12:46:44
问题 A third party our application is integrate with has recently made changes in their security level protocols. In short, My Axis client should now send calls using TLSv1.1 or TLSv1.2. I have seen other posts regarding this, with some good ideas: here here. After making those changes in code, I have triggered the calls again, I have used a snipping tool to monitor the sent package, and I still see in the SSL layer that the protocol being used is TLSv1. the packet snippet what am I doing wrong

tf.keras inception_resnet_v1

左心房为你撑大大i 提交于 2019-12-09 12:31:47
inception_resnet_v1代码 import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="3" import keras import numpy as np import math from tensorflow.python.keras.datasets import cifar10 from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, GlobalAveragePooling2D from tensorflow.python.keras.layers import Flatten, Dense, Dropout,BatchNormalization,Activation, Convolution2D, add from tensorflow.python.keras.layers import Convolution2D from tensorflow.python.keras.models import Model from tensorflow.python.keras.layers import

NumPy for MATLAB users

浪子不回头ぞ 提交于 2019-12-09 12:12:50
NumPy for MATLAB users Help MATLAB/Octave Python Description doc help -i % browse with Info help() Browse help interactively help help or doc doc help Help on using help help plot help(plot) or ?plot Help for a function help splines or doc splines help(pylab) Help for a toolbox/library package demo Demonstration examples Searching available documentation MATLAB/Octave Python Description lookfor plot Search help files help help(); modules [Numeric] List available packages which plot help(plot) Locate functions Using interactively MATLAB/Octave Python Description octave -q ipython -pylab Start

pytorch中torch.unsqueeze()函数与np.expand_dims()

两盒软妹~` 提交于 2019-12-09 12:11:36
numpy. expand_dims ( a , axis ) Expand the shape of an array. Insert a new axis that will appear at the axis position in the expanded array shape. Parameters: a : array_like Input array. axis : int Position in the expanded axes where the new axis is placed. Returns: res : ndarray Output array. The number of dimensions is one greater than that of the input array. Examples >>> x = np.array([1,2]) >>> x.shape (2,) The following is equivalent to x[np.newaxis,:] or x[np.newaxis] : >>> y = np.expand_dims(x, axis=0) >>> y array([[1, 2]]) >>> y.shape (1, 2) >>> y = np.expand_dims(x, axis=1) #

《利用python进行数据分析》读书笔记--第五章 pandas入门

只谈情不闲聊 提交于 2019-12-09 11:29:41
pandas是本书后续内容的首选库。pandas可以满足以下需求: 具备按轴自动或显式数据对齐功能的数据结构。这可以防止许多由于数据未对齐以及来自不同数据源(索引方式不同)的数据而导致的常见错误。. 集成时间序列功能 既能处理时间序列数据也能处理非时间序列数据的数据结构 数学运算和简约(比如对某个轴求和)可以根据不同的元数据(轴编号)执行 灵活处理缺失数据 合并及其他出现在常见数据库(例如基于SQL的)中的关系型运算 1、pandas数据结构介绍 两个数据结构:Series和DataFrame。Series是一种类似于以为NumPy数组的对象,它由一组数据(各种NumPy数据类型)和与之相关的一组数据标签(即索引)组成的。可以用index和values分别规定索引和值。如果不规定索引,会自动创建 0 到 N-1 索引。 #-*- encoding:utf-8 -*- import numpy as np import pandas as pd from pandas import Series,DataFrame #Series可以设置index,有点像字典,用index索引 obj = Series([1,2,3],index=['a','b','c']) #print obj['a'] #也就是说,可以用字典直接创建Series dic = dict(key = ['a','b