axis

Axis 1.4 can't deserialize response

痴心易碎 提交于 2020-01-17 07:05:09
问题 I'm implement a client that access an old service, after some researches I discovered I need user Axis 1.4 do comunicate with this service. After generate the java code from wsdl I can see that Axis is not deserializing the response corretly, it appears it is reading the element as if it was another. This is de wsdl of the service: <?xml version="1.0"?> <definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:xs="http://www.w3.org/2001/XMLSchema" name="PC_Precoservice" targetNamespace=

Axis2 SOAP Response element name camel case issue

[亡魂溺海] 提交于 2020-01-17 04:50:10
问题 Please see the excerpt from my WSDL and SOAP response. WSDL Definition: ---------------- <xs:complexType name="ContactInformation"> <xs:sequence> <xs:element maxOccurs="unbounded" minOccurs="0" name="AddressInfo" nillable="true" type="AddressInfo" /> </xs:sequence> </xs:complexType> SOAP Response: -------------- <contactInformation> <addressInfo> </addressInfo> </contactInformation> Although in the WSDL the element name is "AddressInfo" (A is capital), the generated response is having the

Numpy基础入门(6)统计函数和排序

ⅰ亾dé卋堺 提交于 2020-01-16 09:59:26
统计函数 1.numpy.amin() 和 numpy.amax(),这些函数从给定数组中的元素沿指定轴返回最小值和最大值。 >>>import numpy as np >>>a = np.array([[3,7,5],[8,4,3],[2,4,9]]) >>>a array([[3, 7, 5], [8, 4, 3], [2, 4, 9]]) >>>np.amin(a,1) array([3, 3, 2]) >>>np.amin(a,0) array([2, 4, 3]) >>>np.amax(a) 9 >>>np.amax(a, axis = 0) array([8, 7, 9]) 2.numpy.ptp()函数返回沿轴的值的范围(最大值 - 最小值)。 >>>import numpy as np >>>a = np.array([[3,7,5],[8,4,3],[2,4,9]]) >>>a array([[3,7,5],[8,4,3],[2,4,9]]) >>>np.ptp(a) 7 >>>np.ptp(a, axis = 1) array([4, 5, 7]) >>>np.ptp(a, axis = 0) array([6, 3, 6]) 3.numpy.percentile()百分位数是统计中使用的度量,表示小于这个值得观察值占某个百分比。 函数numpy

08.模型集成

半城伤御伤魂 提交于 2020-01-16 04:31:00
机器学习实战教程(十):提升分类器性能利器-AdaBoost 模型融合方法总结 机器学习模型优化之模型融合 xgboost lightgbm 文章目录 集成方法 1、Bagging 2、Boosting 3、Bagging、Boosting二者之间的区别 4、AdaBoost 1) 计算样本权重 2) 计算错误率 3) 计算弱学习算法权重 4) 更新样本权重 5) AdaBoost算法 5.实例 Bagging Adaboost 集成方法 将不同的分类器组合起来,而这种组合结果则被成为 集成方法 (ensemble method)或者 元算法 (meta-algorithm)。 集成方法主要包括 Bagging 和 Boosting 两种方法,Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法,即将 弱分类器 组装成 强分类器 的方法。 1、Bagging 自举汇聚法 (bootstrap aggregating),也称为bagging方法。Bagging对训练数据采用自举采样(boostrap sampling),即有放回地采样数据,主要思想: 从原始样本集中抽取训练集( 每次都是从训练集中做有放回的随机采样 )。每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本

列线图的绘制

五迷三道 提交于 2020-01-16 03:34:20
该图主要是为了展示:各个位置的氨基酸是什么,说是列线图,不如来说,这是一个展示氨基酸顺序的图 首先配置数据 file<-read.csv("1.csv" ) colors<-colorRampPalette(c("white", "red"))(100) col_order<-colors[order(file[,9])] pdf(file="12345.pdf",width = 25,height = 5) par(mfcol=c(4,1))#设置四行 barplot(rep(1,100),space=0,col=col_order[1:100],axes=F) axis(side = 3, at = (c(1:100)-0.5), labels =file[1:100,3]) axis(side = 1, at = (c(1:100)-0.5), labels =1:100) barplot(rep(1,100),space=0,col=col_order[1:100],axes=F) axis(side = 3, at = (c(1:100)-0.5), labels =file[101:200,3]) axis(side = 1, at = (c(1:100)-0.5), labels =101:200) barplot(rep(1,100),space=0,col=col

pandas-轴axis理解

别来无恙 提交于 2020-01-16 01:41:41
目录 之前写了一篇关于numpy的axis=?的理解,可以翻看 numpy-轴axis理解 。 其实pandas中的axis与numpy一样,以二维数组为例: axis = 0代表高维在变,低维不变,即[0][0]、[1][0]、[2][0]…以列为一组; axis = 1代表高维不变,低维在变,即[0][0]、[0][1]、[0][2]…以行为一组。 那么为什么有时候在pandas中会遇到当axis = 0时,结果看似是以行为一组,当axis = 1时,以列为一组呢? 接下来用一个例子说明,只要按照高低维的方式去理解,就不会搞糊涂了。 导入数据: 我们想删除含有NaN的那一列数据,这里你可能会想,按照列删除,应该axis = 0啊。 其实只要你按照高低维的方式去想,当axis = 1时,高维不变,低维在变,即按照行为一组。 寻找每一行中有没有NaN值,有的话就删除该行对应位置的元素,通过对每一行的搜索,找到一个就删除一个,从上到下累叠一起就像是删除了一列,其实是按行操作的。 同理,当axis = 0时,是按列操作,删除每一列中为NaN值对应位置的元素,从左到右叠在一起就像删除一行,其实是按列操作的。 以下的部分,就比较好理解。 当axis = 1,按行操作,标题倒序排序。 axis = 0,按列操作,行索引升序排序。 axis = 1,按行操作,将z行内容降序排序。 axis =

How to generate WSDD based on code or based on WSDL

≡放荡痞女 提交于 2020-01-15 09:52:21
问题 I have access to remote sever that provides me wsdl back to my response. I prepared Client for this, based on that wsdl. Now I woud like to write a fake Server (for testing needs), what I should start first? Which steps I should implement? The test makes sense only if it is implemented by this WSDL. Is it possible to generate some kind of Service with empty methods? In my app I use Apache Axis 1.4 My steps, how I think: I already have: InterfacePortType class (which, as I understand,

How to generate WSDD based on code or based on WSDL

女生的网名这么多〃 提交于 2020-01-15 09:52:11
问题 I have access to remote sever that provides me wsdl back to my response. I prepared Client for this, based on that wsdl. Now I woud like to write a fake Server (for testing needs), what I should start first? Which steps I should implement? The test makes sense only if it is implemented by this WSDL. Is it possible to generate some kind of Service with empty methods? In my app I use Apache Axis 1.4 My steps, how I think: I already have: InterfacePortType class (which, as I understand,

How to center the y-axis label horizontally in Highcharts?

空扰寡人 提交于 2020-01-15 05:58:06
问题 I have set the y-axis label to "align: high", that is it appears on top of the y-axis, horizontally. Now, as my title goes on two lines, I'd like to center the y-axis label. I tried it with "yaxis: { title { style { text-align: center}}}" and tried as well to put some CSS into the title. But it doesn't work. Has anyone a tip for me? Thanks a lot! 回答1: You mean title of chart or yAxis ? http://api.highcharts.com/highcharts#yAxis.title.align http://api.highcharts.com/highcharts#title.align 来源:

Sklearn 数据归一化处理

北城以北 提交于 2020-01-15 01:05:20
利用preprocessing.MinMaxScaler实现数据归一化 MinMaxScaler有一个重要参数, feature_range ,控制我们希望把数据压缩到的范围,默认是[0,1]。 pd.DataFrame(data):将numpy数组展示为表格形式 from sklearn . preprocessing import MinMaxScaler data = [ [ - 1 , 2 ] , [ - 0.5 , 6 ] , [ 0 , 10 ] , [ 1 , 18 ] ] import pandas as pd print ( pd . DataFrame ( data ) ) print ( ) # 分布归一化 scaler = MinMaxScaler ( ) scaler = scaler . fit ( data ) # 本质生成 max(x) 和 min(x) result = scaler . transform ( data ) print ( pd . DataFrame ( result ) ) print ( ) # 一步归一化 result2 = scaler . fit_transform ( data ) print ( pd . DataFrame ( result2 ) ) print ( ) # 归一化到 5-10 之间 data2