数据分析day03
数据分析day03 4.基于pandas的数据清洗 处理丢失数据 有两种丢失数据: None np.nan(NaN) In [1]: import numpy as np import pandas as pd from pandas import Series,DataFrame import tushare as ts#财经数据接口包 import matplotlib.pyplot as plt 两种丢失数据的区别 In [2]: type(np.nan) Out[2]: float In [5]: np.nan + 3 Out[5]: nan In [3]: type(None) Out[3]: NoneType pandas中的None和NAN In [10]: df = DataFrame(data=np.random.randint(0,100,size=(8,5))) df Out[10]: 0 1 2 3 4 0 44 91 92 51 55 1 23 22 92 35 83 2 21 52 40 63 29 3 94 51 24 70 59 4 27 78 1 21 17 5 94 57 5 43 22 6 87 31 58 30 82 7 93 28 54 7 93 In [12]: df.iloc[1,2] = None df.iloc[3,4] =