python实现―逻辑回归―实战案例(包含全部代码和样本数据,见文章底部百度网盘链接)
#-*- coding:utf-8 -*- import pandas as pd import numpy as np from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression data_lr = pd.read_excel( 'D:\python原始数据\logist_model.xlsx' , 'logist_model' ) print (data_lr.shape) print (data_lr.head( 10 )) array = data_lr.values X_train = array [ 0 : 200 , 2 : 5 ] Y_train = array [ 0 : 200 , 5 ] X_test = array [ 200 : 291 , 2 : 5 ] Y_test = array [ 200 : 291 , 5 ] model = LogisticRegression() model.fit(X_train, Y_train) print ( "截距项" ,model.intercept_) print ( "系数"