调优 | Apache Hudi应用调优指南
通过Spark作业将数据写入Hudi时,Spark应用的调优技巧也适用于此。如果要提高性能或可靠性,请牢记以下几点。 输入并行性: Hudi对输入进行分区默认并发度为1500,以确保每个Spark分区都在2GB的限制内(在Spark2.4.0版本之后去除了该限制),如果有更大的输入,则相应地进行调整。我们建议设置shuffle的并发度,配置项为 hoodie.[insert|upsert|bulkinsert].shuffle.parallelism ,以使其至少达到input_data_size/500MB。 Off-heap(堆外)内存: Hudi写入parquet文件,需要使用一定的堆外内存,如果遇到此类故障,请考虑设置类似 spark.yarn.executor.memoryOverhead 或 spark.yarn.driver.memoryOverhead 的值。 Spark 内存: 通常Hudi需要能够将单个文件读入内存以执行合并或压缩操作,因此执行程序的内存应足以容纳此文件。另外,Hudi会缓存输入数据以便能够智能地放置数据,因此预留一些 spark.memory.storageFraction 通常有助于提高性能。 调整文件大小: 设置 limitFileSize 以平衡接收/写入延迟与文件数量,并平衡与文件数据相关的元数据开销。 时间序列/日志数据: