基于JindoFS+OSS构建高效数据湖
简介: Jindo 是阿里云基于 Apache Spark / Apache Hadoop 在云上定制的分布式计算和存储引擎 为什么要构建数据湖 大数据时代早期,Apache HDFS 是构建具有海量存储能力数据仓库的首选方案。随着云计算、大数据、AI 等技术的发展,所有云厂商都在不断完善自家的对象存储,来更好地适配 Apache Hadoop/Spark 大数据以及各种 AI 生态。由于对象存储有海量、安全、低成本、高可靠、易集成等优势,各种 IoT 设备、网站数据都把各种形式的原始文件存储在对象存储上,利用对象存储增强和拓展大数据 AI 也成为了业界共识,Apache Hadoop 社区也推出了原生的对象存储“Ozone”。从 HDFS 到对象存储,从数据仓库到数据湖,把所有的数据都放在一个统一的存储中,也可以更加高效地进行分析和处理。 对于云上的客户来说,如何构建自己的数据湖,早期的技术选型非常重要,随着数据量的不断增加,后续进行架构升级和数据迁移的成本也会增加。在云上使用 HDFS 构建大规模存储系统,已经暴露出来不少问题。HDFS 是 Hadoop 原生的存储系统,经过 10 年来的发展,HDFS 已经成为大数据生态的存储标准,但我们也看到 HDFS 虽然不断优化,但是 NameNode 单点瓶颈,JVM 瓶颈仍然影响着集群的扩展,从 1 PB到 100+ PB