How to access parameters of the underlying model in ML Pipeline?
问题 I have a DataFrame that is processed with LinearRegression. If I do it directly, like below, I can display the details of the model: val lr = new LinearRegression() val lrModel = lr.fit(df) lrModel: org.apache.spark.ml.regression.LinearRegressionModel = linReg_b22a7bb88404 println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}") Coefficients: [0.9705748115939526] Intercept: 0.31041486689532866 However, if I use it inside a pipeline (like in the simplified example