为什么说 Flink + AI 值得期待?
去年 11 月的 Flink Forward Asia 2019(以下简称 FFA) 上 Flink 社区提出了未来发展的几个主要方向,其中之一就是拥抱 AI [1]。实际上,近年来 AI 持续火热,各种计算框架、模型和算法层出不穷,从某种角度上来说,这个赛道已经有些拥挤了。在这种情况下, Flink 将怎样拥抱 AI,又会为用户带来什么新的价值?Flink AI 的优劣势分别在哪里?本文将通过对这些问题的讨论来分析 Flink AI 的发展方向。 Lambda 架构,流批统一和 AI 实时化 Flink 在 AI 中的价值其实和大数据中 Lambda 架构[2]和流批统一这两个概念有关系,Flink 为大数据实时化带来的价值也将同样使 AI 受益。 不妨让我们简单回顾一下大数据的发展过程。从 Google 奠基性的“三架马车” 3[5] 论文发表后的很长一段时间内,大数据的发展主线上都只有批计算的身影。后来随着大家认识到数据时效性的重要作用,Twitter 开源的流计算引擎 Storm [6] 红极一时,各种流计算引擎也纷纷登场,其中也包括了 Flink。由于成本、计算准确性和容错性等方面的考虑,各家企业纷纷使用起了被称为 Lambda 架构的解决方案,在同一个架构下融合批计算和流计算,以便在成本,容错和数据时效性之间达到一个平衡。 Lambda