I'm trying to filter one dataframe against another:
scala> val df1 = sc.parallelize((1 to 100).map(a=>(s"user $a", a*0.123, a))).toDF("name", "score", "user_id") scala> val df2 = sc.parallelize(List(2,3,4,5,6)).toDF("valid_id")
Now I want to filter df1 and get back a dataframe that contains all the rows in df1 where user_id is in df2("valid_id"). In other words, I want all the rows in df1 where the user_id is either 2,3,4,5 or 6
scala> df1.select("user_id").filter($"user_id" in df2("valid_id")) warning: there were 1 deprecation warning(s); re-run with -deprecation for details org.apache.spark.sql.AnalysisException: resolved attribute(s) valid_id#20 missing from user_id#18 in operator !Filter user_id#18 IN (valid_id#20);
On the other hand when I try to do a filter against a function, everything looks great:
scala> df1.select("user_id").filter(($"user_id" % 2) === 0) res1: org.apache.spark.sql.DataFrame = [user_id: int]
Why am I getting this error? Is there something wrong with my syntax?
following comment I have tried to do a left outer join:
scala> df1.show +-------+------------------+-------+ | name| score|user_id| +-------+------------------+-------+ | user 1| 0.123| 1| | user 2| 0.246| 2| | user 3| 0.369| 3| | user 4| 0.492| 4| | user 5| 0.615| 5| | user 6| 0.738| 6| | user 7| 0.861| 7| | user 8| 0.984| 8| | user 9| 1.107| 9| |user 10| 1.23| 10| |user 11| 1.353| 11| |user 12| 1.476| 12| |user 13| 1.599| 13| |user 14| 1.722| 14| |user 15| 1.845| 15| |user 16| 1.968| 16| |user 17| 2.091| 17| |user 18| 2.214| 18| |user 19|2.3369999999999997| 19| |user 20| 2.46| 20| +-------+------------------+-------+ only showing top 20 rows scala> df2.show +--------+ |valid_id| +--------+ | 2| | 3| | 4| | 5| | 6| +--------+ scala> df1.join(df2, df1("user_id") === df2("valid_id")) res6: org.apache.spark.sql.DataFrame = [name: string, score: double, user_id: int, valid_id: int] scala> res6.collect res7: Array[org.apache.spark.sql.Row] = Array() scala> df1.join(df2, df1("user_id") === df2("valid_id"), "left_outer") res8: org.apache.spark.sql.DataFrame = [name: string, score: double, user_id: int, valid_id: int] scala> res8.count res9: Long = 0
I'm running spark 1.5.0 with scala 2.10.5