Spark: produce RDD[(X, X)] of all possible combinations from RDD[X]

匿名 (未验证) 提交于 2019-12-03 02:51:02

问题:

Is it possible in Spark to implement '.combinations' function from scala collections?

   /** Iterates over combinations.    *    *  @return   An Iterator which traverses the possible n-element combinations of this $coll.    *  @example  `"abbbc".combinations(2) = Iterator(ab, ac, bb, bc)`    */ 

For example how can I get from RDD[X] to RDD[List[X]] or RDD[(X,X)] for combinations of size = 2. And lets assume that all values in RDD are unique.

回答1:

Cartesian product and combinations are two different things, the cartesian product will create an RDD of size rdd.size() ^ 2 and combinations will create an RDD of size rdd.size() choose 2

val rdd = sc.parallelize(1 to 5) val combinations = rdd.cartesian(rdd).filter{ case (a,b) => a 

Note this will only work if an ordering is defined on the elements of the list, since we use . This one only works for choosing two but can easily be extended by making sure the relationship a for all a and b in the sequence



回答2:

As discussed, cartesian will give you n^2 elements of the cartesian product of the RDD with itself. This algorithm computes the combinations (n,2) of an RDD without having to compute the n^2 elements first: (used String as type, generalizing to a type T takes some plumbing with classtags that would obscure the purpose here)

This is probably less time efficient that cartesian + filtering due to the iterative count and take actions that forces the computation of the RDD, but more space efficient as it calculates only the C(n,2) = n!/(2*(n-2))! = (n*(n-1)/2) elements instead of the n^2 of the cartesian product.

 import org.apache.spark.rdd._   def combs(rdd:RDD[String]):RDD[(String,String)] = {     val count = rdd.count     if (rdd.count  (elem(0),e))         comb.union(combs(subtracted))     }   } 


回答3:

This is supported natively by a Spark RDD with the cartesian transformation.

e.g.:

val rdd = sc.parallelize(1 to 5) val cartesian = rdd.cartesian(rdd) cartesian.collect  Array[(Int, Int)] = Array((1,1), (1,2), (1,3), (1,4), (1,5),  (2,1), (2,2), (2,3), (2,4), (2,5),  (3,1), (3,2), (3,3), (3,4), (3,5),  (4,1), (4,2), (4,3), (4,4), (4,5),  (5,1), (5,2), (5,3), (5,4), (5,5)) 


回答4:

This creates all combinations (n, 2) and works for any RDD without requiring any ordering on the elements of RDD.

val rddWithIndex = rdd.zipWithIndex rddWithIndex.cartesian(rddWithIndex).filter{case(a, b) => a._2  (a._1, b._1)} 

a._2 and b._2 are the indices, while a._1 and b._1 are the elements of the original RDD.

Example:

Note that, no ordering is defined on the maps here.

val m1 = Map('a' -> 1, 'b' -> 2) val m2 = Map('c' -> 3, 'a' -> 4) val m3 = Map('e' -> 5, 'c' -> 6, 'b' -> 7) val rdd = sc.makeRDD(Array(m1, m2, m3)) val rddWithIndex = rdd.zipWithIndex rddWithIndex.cartesian(rddWithIndex).filter{case(a, b) => a._2  (a._1, b._1)}.collect 

Output:

Array((Map(a -> 1, b -> 2),Map(c -> 3, a -> 4)), (Map(a -> 1, b -> 2),Map(e -> 5, c -> 6, b -> 7)), (Map(c -> 3, a -> 4),Map(e -> 5, c -> 6, b -> 7))) 


标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!