可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I have some data that looks like the following. It is grouped by variable "Year" and I want to extract the percentiles of each observation of Score, with respect to the Year it is from, preferably as a vector.
Year Score 2001 89 2001 70 2001 72 2001 ... .......... 2004 87 2004 90
etc.
How can I do this? aggregate will not work, and I do not think apply will work either.
回答1:
Following up on Vince's solution, you can also do this with plyr
or by
:
ddply(df, .(years), function(x) transform(x, percentile=ecdf(x$scores)(x$scores)))
回答2:
Using ave
ave(d1$scores, d1$year, FUN=function(x) ecdf(x)(x))
回答3:
I may be misunderstanding, but I think it can be done this way:
> years = c(2006, 2006, 2006, 2006, 2001, 2001, 2001, 2001, 2001) > scores = c(13, 65, 23, 34, 78, 56, 89, 98, 100) > tapply(scores, years, quantile) $`2001` 0% 25% 50% 75% 100% 56 78 89 98 100 $`2006` 0% 25% 50% 75% 100% 13.00 20.50 28.50 41.75 65.00
Is this right?
Edit:
I think this may do it then:
> tapply(scores, years, function(x) { f = ecdf(x); sapply(x, f) }) $`2001` [1] 0.4 0.2 0.6 0.8 1.0 $`2006` [1] 0.25 1.00 0.50 0.75
With your data:
> tapply(scores, years, function(x) { f = ecdf(x); sapply(x, f) }) $`2000` [1] 0.3333333 0.6666667 1.0000000 $`2008` [1] 0.5 1.0
Edit 2:
This is probably faster:
tapply(scores, years, function(x) { f = ecdf(x); f(x) })
f()
is vectorized :-)
Last, modification, I promise :-). If you want names:
> tapply(scores, years, function(x) { f = ecdf(x); r = f(x); names(r) <- x; r }) $`2000` 1000 1700 2000 0.3333333 0.6666667 1.0000000 $`2008` 1500 2000 0.5 1.0
回答4:
You can also do something like this:
# first I'll create two dummy variables (Year, Score) year <- rep(2001:2005, 2) score <- round(rnorm(10, 35, 3)) # then coerce variables to data frame d <- data.frame(year, score) # then you can use split() function to apply # function to each stratum of grouping variable sapply(split(score, year), function(x) quantile(x, probs=seq(.1, .9, .1)))
Output will go something like this:
2001 2002 2003 2004 2005 10% 34.3 32.1 34.3 29.6 36.1 20% 34.6 32.2 34.6 30.2 36.2 30% 34.9 32.3 34.9 30.8 36.3 40% 35.2 32.4 35.2 31.4 36.4 50% 35.5 32.5 35.5 32.0 36.5 60% 35.8 32.6 35.8 32.6 36.6 70% 36.1 32.7 36.1 33.2 36.7 80% 36.4 32.8 36.4 33.8 36.8 90% 36.7 32.9 36.7 34.4 36.9
You can utilize t() function to transpose rows and columns if you prefer. Writing a function will be a good way to tackle this kind of problems. I strongly recommend plyr package written by Hadley Wickam.
Hope this helps! All the best!
回答5:
I found a method, but it requires a loop.
group.pctiles <- function(group.var, comparable) { unique.vals <- unique(group.var) pctiles <- vector(length = length(group.var)) for (i in 1:length(unique.vals)) { slice <- which(group.var == unique.vals[i]) F <- ecdf(comparable[slice]) group.pctiles <- F(comparable[slice]) pctiles[slice] <- group.pctiles } return(pctiles) }
group.var is the variable that groups the data. In my example in my question, it is Year. comparable contains the values we want to find the percentiles for. In my question, comparable would be Score.
For the following data, I get the result below:
Year,School,Fees 2000,10,1000 2008,1,1050 2008,4,2000 2000,3,1700 2000,1,2000 > group.pctiles(dat, dat$Year, dat$Fees) [1] 0.3333333 0.5000000 1.0000000 0.6666667 1.0000000
Then, I can cbind these percentiles back into the original data.frame for analysis, reporting, etc.
Anyone have a solution that doesn't require a loop?
回答6:
How about something like:
Year <- c(2000,2008,2008,2000,2000) Fees <- c(1000,1050,2000,1700,2000) dat <- data.frame(Fees,Year,result=NA) res <- tapply(Fees,Year,function(x) rank(x,ties.method="max")/length(x)) for(i in 1:length(res)) dat[Year==as.numeric(names(res)[i]),"result"] <-res[[i]]
which yields:
Fees Year result 1 1000 2000 0.3333333 2 1050 2008 0.5000000 3 2000 2008 1.0000000 4 1700 2000 0.6666667 5 2000 2000 1.0000000
回答7:
Using data.table is pretty straight-forward as well. Just for completeness and also as an easy way to find the data.table solution.
library(data.table) year <- rep(2001:2005, 2) score <- round(rnorm(10, 35, 3)) dt <- data.table(score) dt[, .(Percentile = ecdf(score)(score)), by = list(year)]