I read the following paper(http://www3.stat.sinica.edu.tw/statistica/oldpdf/A10n416.pdf) where they model the variance-covariance matrix ∑ as:
∑ = diag(S)*R*diag(S) (Equation 1 in the paper)
S is the k×1 vector of standard deviations, diag(S) is the diagonal matrix with diagonal elements S, and R is the k×k correlation matrix.
How can I implement this using PyMC ?
Here is some initial code I wrote:
import numpy as np import pandas as pd import pymc as pm k=3 prior_mu=np.ones(k) prior_var=np.eye(k) prior_corr=np.eye(k) prior_cov=prior_var*prior_corr*prior_var post_mu = pm.Normal("returns",prior_mu,1,size=k) post_var=pm.Lognormal("variance",np.diag(prior_var),1,size=k) post_corr_inv=pm.Wishart("inv_corr",n_obs,np.linalg.inv(prior_corr)) post_cov_matrix_inv = ??? muVector=[10,5,-2] varMatrix=np.diag([10,20,10]) corrMatrix=np.matrix([[1,.2,0],[.2,1,0],[0,0,1]]) cov_matrix=varMatrix*corrMatrix*varMatrix n_obs=10000 x=np.random.multivariate_normal(muVector,cov_matrix,n_obs) obs = pm.MvNormal( "observed returns", post_mu, post_cov_matrix_inv, observed = True, value = x ) model = pm.Model( [obs, post_mu, post_cov_matrix_inv] ) mcmc = pm.MCMC() mcmc.sample( 5000, 2000, 3 )
Thanks
[edit]
I think that can be done using the following:
@pm.deterministic def post_cov_matrix_inv(post_sdev=post_sdev,post_corr_inv=post_corr_inv): return np.diag(post_sdev)*post_corr_inv*np.diag(post_sdev)