I have a large amount of data in a collection in mongodb which I need to analyze. How do i import that data to pandas?
I am new to pandas and numpy.
EDIT: The mongodb collection contains sensor values tagged with date and time. The sensor values are of float datatype.
Sample Data:
{ "_cls" : "SensorReport", "_id" : ObjectId("515a963b78f6a035d9fa531b"), "_types" : [ "SensorReport" ], "Readings" : [ { "a" : 0.958069536790466, "_types" : [ "Reading" ], "ReadingUpdatedDate" : ISODate("2013-04-02T08:26:35.297Z"), "b" : 6.296118156595, "_cls" : "Reading" }, { "a" : 0.95574014778624, "_types" : [ "Reading" ], "ReadingUpdatedDate" : ISODate("2013-04-02T08:27:09.963Z"), "b" : 6.29651468650064, "_cls" : "Reading" }, { "a" : 0.953648289182713, "_types" : [ "Reading" ], "ReadingUpdatedDate" : ISODate("2013-04-02T08:27:37.545Z"), "b" : 7.29679823731148, "_cls" : "Reading" }, { "a" : 0.955931884300997, "_types" : [ "Reading" ], "ReadingUpdatedDate" : ISODate("2013-04-02T08:28:21.369Z"), "b" : 6.29642922525632, "_cls" : "Reading" }, { "a" : 0.95821381, "_types" : [ "Reading" ], "ReadingUpdatedDate" : ISODate("2013-04-02T08:41:20.801Z"), "b" : 7.28956613, "_cls" : "Reading" }, { "a" : 4.95821335, "_types" : [ "Reading" ], "ReadingUpdatedDate" : ISODate("2013-04-02T08:41:36.931Z"), "b" : 6.28956574, "_cls" : "Reading" }, { "a" : 9.95821341, "_types" : [ "Reading" ], "ReadingUpdatedDate" : ISODate("2013-04-02T08:42:09.971Z"), "b" : 0.28956488, "_cls" : "Reading" }, { "a" : 1.95667927, "_types" : [ "Reading" ], "ReadingUpdatedDate" : ISODate("2013-04-02T08:43:55.463Z"), "b" : 0.29115237, "_cls" : "Reading" } ], "latestReportTime" : ISODate("2013-04-02T08:43:55.463Z"), "sensorName" : "56847890-0", "reportCount" : 8 }