pandas read_csv and filter columns with usecols

匿名 (未验证) 提交于 2019-12-03 02:13:02

问题:

I have a csv file which isn't coming in correctly with pandas.read_csv when I filter the columns with usecols and use multiple indexes.

import pandas as pd csv = r"""dummy,date,loc,x bar,20090101,a,1 bar,20090102,a,3 bar,20090103,a,5 bar,20090101,b,1 bar,20090102,b,3 bar,20090103,b,5""" f = open('foo.csv', 'w') f.write(csv) f.close()  df1 = pd.read_csv('foo.csv',          index_col=["date", "loc"],          usecols=["dummy", "date", "loc", "x"],         parse_dates=["date"],         header=0,         names=["dummy", "date", "loc", "x"]) print df1  # Ignore the dummy columns df2 = pd.read_csv('foo.csv',          index_col=["date", "loc"],          usecols=["date", "loc", "x"], # <----------- Changed         parse_dates=["date"],         header=0,         names=["dummy", "date", "loc", "x"]) print df2 

I expect that df1 and df2 should be the same except for the missing dummy column, but the columns come in mislabeled. Also the date is getting parsed as a date.

In [118]: %run test.py                dummy  x date       loc 2009-01-01 a     bar  1 2009-01-02 a     bar  3 2009-01-03 a     bar  5 2009-01-01 b     bar  1 2009-01-02 b     bar  3 2009-01-03 b     bar  5               date date loc a    1    20090101      3    20090102      5    20090103 b    1    20090101      3    20090102      5    20090103 

Using column numbers instead of names give me the same problem. I can workaround the issue by dropping the dummy column after the read_csv step, but I'm trying to understand what is going wrong. I'm using pandas 0.10.1.

edit: fixed bad header usage.

回答1:

The answer by @chip completely misses the point of two keyword arguments.

  • names is only necessary when there is no header and you want to specify other arguments using column names rather than integer indices.
  • usecols is supposed to provide a filter before reading the whole DataFrame into memory; if used properly, there should never be a need to delete columns after reading.

This solution corrects those oddities:

import pandas as pd from StringIO import StringIO  csv = r"""dummy,date,loc,x bar,20090101,a,1 bar,20090102,a,3 bar,20090103,a,5 bar,20090101,b,1 bar,20090102,b,3 bar,20090103,b,5"""  df = pd.read_csv(StringIO(csv),         header=0,         index_col=["date", "loc"],          usecols=["date", "loc", "x"],         parse_dates=["date"]) 

Which gives us:

                x date       loc 2009-01-01 a    1 2009-01-02 a    3 2009-01-03 a    5 2009-01-01 b    1 2009-01-02 b    3 2009-01-03 b    5 


回答2:

This code achieves what you want --- also its weird and certainly buggy:

I observed that it works when:

a) you specify the index_col rel. to the number of columns you really use -- so its three columns in this example, not four (you drop dummy and start counting from then onwards)

b) same for parse_dates

c) not so for usecols ;) for obvious reasons

d) here I adapted the names to mirror this behaviour

import pandas as pd from StringIO import StringIO  csv = """dummy,date,loc,x bar,20090101,a,1 bar,20090102,a,3 bar,20090103,a,5 bar,20090101,b,1 bar,20090102,b,3 bar,20090103,b,5 """  df = pd.read_csv(StringIO(csv),         index_col=[0,1],         usecols=[1,2,3],          parse_dates=[0],         header=0,         names=["date", "loc", "", "x"])  print df 

which prints

                x date       loc    2009-01-01 a    1 2009-01-02 a    3 2009-01-03 a    5 2009-01-01 b    1 2009-01-02 b    3 2009-01-03 b    5 


回答3:

If your csv file contains extra data, columns can be deleted from the DataFrame after import.

import pandas as pd from StringIO import StringIO  csv = r"""dummy,date,loc,x bar,20090101,a,1 bar,20090102,a,3 bar,20090103,a,5 bar,20090101,b,1 bar,20090102,b,3 bar,20090103,b,5"""  df = pd.read_csv(StringIO(csv),         index_col=["date", "loc"],          usecols=["dummy", "date", "loc", "x"],         parse_dates=["date"],         header=0,         names=["dummy", "date", "loc", "x"]) del df['dummy'] 

Which gives us:

                x date       loc 2009-01-01 a    1 2009-01-02 a    3 2009-01-03 a    5 2009-01-01 b    1 2009-01-02 b    3 2009-01-03 b    5 


回答4:

import csv first and use csv.DictReader its easy to process...



标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!