I have a 20 x 4000 dataframe in python using pandas. Two of these columns are named Year and quarter. I'd like to create a variable called period that makes Year = 2000 and quarter= q2 into 2000q2
Can anyone help with that?
I have a 20 x 4000 dataframe in python using pandas. Two of these columns are named Year and quarter. I'd like to create a variable called period that makes Year = 2000 and quarter= q2 into 2000q2
Can anyone help with that?
dataframe["period"] = dataframe["Year"].map(str) + dataframe["quarter"]
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']}) df['period'] = df[['Year', 'quarter']].apply(lambda x: ''.join(x), axis=1)
Yields this dataframe
Year quarter period 0 2014 q1 2014q1 1 2015 q2 2015q2
This method generalizes to an arbitrary number of string columns by replacing df[['Year', 'quarter']]
with any column slice of your dataframe, e.g. df.iloc[:,0:2].apply(lambda x: ''.join(x), axis=1)
.
You can check more information about apply() method here
yet another ways to do this:
df['period'] = df['Year'].astype(str) + df['quarter']
or bit slower:
df['period'] = df[['Year','quarter']].astype(str).sum(axis=1)
Let's test it on 200K rows DF:
In [250]: df Out[250]: Year quarter 0 2014 q1 1 2015 q2 In [251]: df = pd.concat([df] * 10**5) In [252]: df.shape Out[252]: (200000, 2)
UPDATE: new timings using Pandas 0.19.0
Timing without CPU/GPU optimization (sorted from fastest to slowest):
In [107]: %timeit df['Year'].astype(str) + df['quarter'] 10 loops, best of 3: 131 ms per loop In [106]: %timeit df['Year'].map(str) + df['quarter'] 10 loops, best of 3: 161 ms per loop In [108]: %timeit df.Year.str.cat(df.quarter) 10 loops, best of 3: 189 ms per loop In [109]: %timeit df.loc[:, ['Year','quarter']].astype(str).sum(axis=1) 1 loop, best of 3: 567 ms per loop In [110]: %timeit df[['Year','quarter']].astype(str).sum(axis=1) 1 loop, best of 3: 584 ms per loop In [111]: %timeit df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1) 1 loop, best of 3: 24.7 s per loop
Timing using CPU/GPU optimization:
In [113]: %timeit df['Year'].astype(str) + df['quarter'] 10 loops, best of 3: 53.3 ms per loop In [114]: %timeit df['Year'].map(str) + df['quarter'] 10 loops, best of 3: 65.5 ms per loop In [115]: %timeit df.Year.str.cat(df.quarter) 10 loops, best of 3: 79.9 ms per loop In [116]: %timeit df.loc[:, ['Year','quarter']].astype(str).sum(axis=1) 1 loop, best of 3: 230 ms per loop In [117]: %timeit df[['Year','quarter']].astype(str).sum(axis=1) 1 loop, best of 3: 230 ms per loop In [118]: %timeit df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1) 1 loop, best of 3: 9.38 s per loop
The method cat()
of the .str
accessor works really well for this:
>>> import pandas as pd >>> df = pd.DataFrame([["2014", "q1"], ... ["2015", "q3"]], ... columns=('Year', 'Quarter')) >>> print(df) Year Quarter 0 2014 q1 1 2015 q3 >>> df['Period'] = df.Year.str.cat(df.Quarter) >>> print(df) Year Quarter Period 0 2014 q1 2014q1 1 2015 q3 2015q3
cat()
even allows you to add a separator so, for example, suppose you only have integers for year and period, you can do this:
>>> import pandas as pd >>> df = pd.DataFrame([[2014, 1], ... [2015, 3]], ... columns=('Year', 'Quarter')) >>> print(df) Year Quarter 0 2014 1 1 2015 3 >>> df['Period'] = df.Year.astype(str).str.cat(df.Quarter.astype(str), sep='q') >>> print(df) Year Quarter Period 0 2014 1 2014q1 1 2015 3 2015q3
Use of a lamba function this time with string.format().
import pandas as pd df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': ['q1', 'q2']}) print df df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1) print df Quarter Year 0 q1 2014 1 q2 2015 Quarter Year YearQuarter 0 q1 2014 2014q1 1 q2 2015 2015q2
This allows you to work with non-strings and reformat values as needed.
import pandas as pd df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': [1, 2]}) print df.dtypes print df df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}q{}'.format(x[0],x[1]), axis=1) print df Quarter int64 Year object dtype: object Quarter Year 0 1 2014 1 2 2015 Quarter Year YearQuarter 0 1 2014 2014q1 1 2 2015 2015q2
As your data are inserted to a dataframe, this command should solve your problem:
df['period'] = df[['Year', 'quarter']].apply(lambda x: ' '.join(x.astype(str)), axis=1)
Although the @silvado answer is good if you change df.map(str)
to df.astype(str)
it will be faster:
import pandas as pd df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']}) In [131]: %timeit df["Year"].map(str) 10000 loops, best of 3: 132 us per loop In [132]: %timeit df["Year"].astype(str) 10000 loops, best of 3: 82.2 us per loop
Here is an implementation that I find very versatile:
In [1]: import pandas as pd In [2]: df = pd.DataFrame([[0, 'the', 'quick', 'brown'], ...: [1, 'fox', 'jumps', 'over'], ...: [2, 'the', 'lazy', 'dog']], ...: columns=['c0', 'c1', 'c2', 'c3']) In [3]: def str_join(df, sep, *cols): ...: from functools import reduce ...: return reduce(lambda x, y: x.astype(str).str.cat(y.astype(str), sep=sep), ...: [df[col] for col in cols]) ...: In [4]: df['cat'] = str_join(df, '-', 'c0', 'c1', 'c2', 'c3') In [5]: df Out[5]: c0 c1 c2 c3 cat 0 0 the quick brown 0-the-quick-brown 1 1 fox jumps over 1-fox-jumps-over 2 2 the lazy dog 2-the-lazy-dog
more efficient is
def concat_df_str1(df): """ run time: 1.3416s """ return pd.Series([''.join(row.astype(str)) for row in df.values], index=df.index)
and here is a time test:
import numpy as np import pandas as pd from time import time def concat_df_str1(df): """ run time: 1.3416s """ return pd.Series([''.join(row.astype(str)) for row in df.values], index=df.index) def concat_df_str2(df): """ run time: 5.2758s """ return df.astype(str).sum(axis=1) def concat_df_str3(df): """ run time: 5.0076s """ df = df.astype(str) return df[0] + df[1] + df[2] + df[3] + df[4] + \ df[5] + df[6] + df[7] + df[8] + df[9] def concat_df_str4(df): """ run time: 7.8624s """ return df.astype(str).apply(lambda x: ''.join(x), axis=1) def main(): df = pd.DataFrame(np.zeros(1000000).reshape(100000, 10)) df = df.astype(int) time1 = time() df_en = concat_df_str4(df) print('run time: %.4fs' % (time() - time1)) print(df_en.head(10)) if __name__ == '__main__': main()
final, when sum
(concat_df_str2) is used, the result is not simply concat, it will trans to integer.
As many have mentioned previously, you must convert each column to string and then use the plus operator to combine two string columns. You can get a large performance improvement by using NumPy.
%timeit df['Year'].values.astype(str) + df.quarter 71.1 ms ± 3.76 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) %timeit df['Year'].astype(str) + df['quarter'] 565 ms ± 22.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Use .combine_first
.
df['Period'] = df['Year'].combine_first(df['Quarter'])
def madd(x): """Performs element-wise string concatenation with multiple input arrays. Args: x: iterable of np.array. Returns: np.array. """ for i, arr in enumerate(x): if type(arr.item(0)) is not str: x[i] = x[i].astype(str) return reduce(np.core.defchararray.add, x)
For example:
data = list(zip([2000]*4, ['q1', 'q2', 'q3', 'q4'])) df = pd.DataFrame(data=data, columns=['Year', 'quarter']) df['period'] = madd([df[col].values for col in ['Year', 'quarter']]) df Year quarter period 0 2000 q1 2000q1 1 2000 q2 2000q2 2 2000 q3 2000q3 3 2000 q4 2000q4