Matrix multiplication with MKL

匿名 (未验证) 提交于 2019-12-03 00:59:01

问题:

I have the CSR coordinates of a matrix.

/* alloc space for COO matrix */ int *coo_rows = (int*) malloc(K.n_rows * sizeof(int)); int *coo_cols = (int*) malloc(K.n_rows * sizeof(int)); float *coo_vals = (float*) malloc(K.n_rows * sizeof(float));  /*Load coo values*/  int *rowptrs = (int*) malloc((N_unique+1)*sizeof(int)); int *colinds = (int*) malloc(K.n_rows *sizeof(int)); double *vals = (double*) malloc(K.n_rows *sizeof(double));  /* take csr values */ int job[] = {         2, // job(1)=2 (coo->csr with sorting)         0, // job(2)=1 (one-based indexing for csr matrix)         0, // job(3)=1 (one-based indexing for coo matrix)         0, // empty         n1, // job(5)=nnz (sets nnz for csr matrix)         0 // job(6)=0 (all output arrays filled)         }; int info; mkl_scsrcoo(job, &n, vals, colinds, rowptrs, &n1, coo_vals, coo_rows, coo_cols, &info); assert(info == 0 && "Converted COO->CSR"); 

Now I want to apply the mkl_dcsrmm function to compute C := alpha*A*B + beta*C with beta = 0;

/* function declaration */ void mkl_dcsrmm (char *transa, MKL_INT *m, MKL_INT *n, MKL_INT *k, double *alpha, char *matdescra, double *val, MKL_INT *indx, MKL_INT *pntrb, MKL_INT *pntre, double *b, MKL_INT *ldb, double *beta, double *c, MKL_INT *ldc); 

Since now I have.

int A_rows = ..., A_cols = ..., C_cols = ... double alpha = 1.0;  mkl_dcsrmm ((char*)"N", &A_rows, &C_cols, &A_cols, &alpha, char *matdescra, vals, coo_cols, rowptrs, colinds , double *b, MKL_INT *ldb, double *beta, double *c, MKL_INT *ldc); 

I found some difficulties on filling the inputs. Could you please help me to fill the rest of the inputs?

A specific input for which I want to go in more details is the matdescra. I borrowed the following code from cspblas_ccsr example

char matdescra[6]; matdescra[0] = 'g'; matdescra[1] = 'l'; matdescra[2] = 'n'; matdescra[3] = 'c'; 

but I have some questions about that. The matrix A I am working is not triangular and the initialization of this char array engage you to make such a declaration, how should I configure the parameters of the matdescra array?

回答1:

Here is what I use, and what works for me.

char matdescra[6] = {'g', 'l', 'n', 'c', 'x', 'x'}; /* https://software.intel.com/sites/products/documentation/hpc/mkl/mklman/GUID-34C8DB79-0139-46E0-8B53-99F3BEE7B2D4.htm#TBL2-6 G: General. D: Diagonal L/U Lower/Upper triangular (ignored with G) N: non-unit diagonal (ignored with G) C: zero-based indexing. */ 

Complete Example

Here is a complete example. I first create a random matrix by filling a dense matrix with a specified density of Non-Zero elements. Then I convert it to a sparse matrix in CSR-format. Finally, I do the multiplication using mkl_dcsrmm. As a possible check (check not done), I do the same multiplication using the cblas_dgemm function with the dense matrix.

#include "mkl.h" #include "mkl_spblas.h" #include <stddef.h>  // For NULL #include <stdlib.h>  // for rand() #include <assert.h> #include <stdio.h> #include <limits.h>   // Compute C = A * B; where A is sparse and B is dense. int main() {     MKL_INT m=10, n=5, k=11;     const double sparsity = 0.9; ///< @param sparsity Values below which are set to zero (sampled from uniform(0,1)-distribution).     double  *A_dense;     double *B;     double *C;     double alpha = 1.0;     double beta = 0.0;     const int allignment = 64;      // Seed the RNG to always be the same     srand(42);      // Allocate memory to matrices     A_dense = (double *)mkl_malloc( m*k*sizeof( double ), allignment);     B = (double *)mkl_malloc( k*n*sizeof( double ), allignment);     C = (double *)mkl_malloc( m*n*sizeof( double ), allignment);     if (A_dense == NULL || B == NULL || C == NULL) {         printf("ERROR: Can't allocate memory for matrices. Aborting... \n\n");         mkl_free(A_dense);         mkl_free(B);         mkl_free(C);         return 1;     }      // Initializing matrix data     int i;     int nzmax = 0;     for (i = 0; i < (m*k); i++) {         double val = rand() / (double)RAND_MAX;         if ( val < sparsity ) {             A_dense[i] = 0.0;         } else {             A_dense[i] = val;             nzmax++;         }     }     for (i = 0; i < (k*n); i++) {             B[i] = rand();     }     for (i = 0; i < (m*n); i++) {             C[i]  = 0.0;     }      // Convert A to a sparse matrix in CSR format.      // INFO: https://software.intel.com/sites/products/documentation/hpc/mkl/mklman/GUID-AD67DD8D-4C22-4232-8D3F-AF97DC2ABBC8.htm#GUID-AD67DD8D-4C22-4232-8D3F-AF97DC2ABBC8     MKL_INT job[6];     job[0] = 0;  // convert TO CSR.     job[1] = 0;  // Zero-based indexing for input.     job[2] = 0;  // Zero-based indexing for output.     job[3] = 2;  // adns is  a whole matrix A.     job[4] = nzmax;  // Maximum number of non-zero elements allowed.     job[5] = 3;  // all 3 arays are generated for output.      /* JOB: conversion parameters     * m: number of rows of A.     * k: number of columns of A.     * adns: (input/output). Array containing non-zero elements of the matrix A.     * lda: specifies the leading dimension of adns. must be at least max(1, m).     * acsr: (input/output) array containing non-zero elements of the matrix A.      * ja: array containing the column indices.     * ia length m+1,  rowIndex.     * OUTPUT:     * info: 0 if successful. i if interrupted at i-th row because of lack of space.     */     int info = -1;     printf("nzmax:\t %d\n", nzmax);      double *A_sparse = mkl_malloc(nzmax * sizeof(double), allignment);     if (A_sparse == NULL) {         printf("ERROR: Could not allocate enough space to A_sparse.\n");         return 1;     }     MKL_INT *A_sparse_cols = mkl_malloc(nzmax * sizeof(MKL_INT), allignment);     if (A_sparse_cols == NULL) {         printf("ERROR: Could not allocate enough space to A_sparse_cols.\n");         return 1;     }     MKL_INT *A_sparse_rowInd = mkl_malloc((m+1) * sizeof(MKL_INT), allignment);     if (A_sparse_rowInd == NULL) {         printf("ERROR: Could not allocate enough space to A_sparse_rowInd.\n");         return 1;     }     mkl_ddnscsr(job, &m, &k, A_dense, &k, A_sparse, A_sparse_cols, A_sparse_rowInd, &info);     if(info != 0) {         printf("WARNING: info=%d, expected 0.\n", info);     }     assert(info == 0);      char transa = 'n';     MKL_INT ldb = n, ldc=n;     char matdescra[6] = {'g', 'l', 'n', 'c', 'x', 'x'};     /* https://software.intel.com/sites/products/documentation/hpc/mkl/mklman/GUID-34C8DB79-0139-46E0-8B53-99F3BEE7B2D4.htm#TBL2-6     G: General. D: Diagonal     L/U Lower/Upper triangular (ignored with G)     N: non-unit diagonal (ignored with G)     C: zero-based indexing.     */       mkl_dcsrmm(&transa, &m, &n, &m, &alpha, matdescra, A_sparse, A_sparse_cols,              A_sparse_rowInd, &(A_sparse_rowInd[1]), B, &ldb, &beta, C, &ldc);     // The same computation in dense format     cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,                  m, n, k, alpha, A_dense, k, B, n, beta, C, n);      mkl_free(A_dense);     mkl_free(A_sparse);     mkl_free(A_sparse_cols);     mkl_free(A_sparse_rowInd);     mkl_free(B);     mkl_free(C);     return 0; } 


标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!