Inconsistent TypeError: cannot serialize '_io.TextIOWrapper' object

匿名 (未验证) 提交于 2019-12-03 00:56:02

问题:

I am working with Python 3.6.1 on Jupyter 5. My goal is to test how portalocker manage concurrent appending on the same file.

To accomplish that I have made a simple function that appends a single line to the same file and I use multiprocessing.Pool and Pool.map() to run the function in parallel.

Here is the code in Jupyter notebook.

cell 1

from time import time from multiprocessing import Pool import portalocker   def f(*args):     while time() < start + 1:         pass     with open('portalocker_test.txt', 'a') as f:         portalocker.lock(f, portalocker.LOCK_EX)         f.write(f'{time()}\n') 

cell 2

start = time() with Pool(4) as p:     p.map(f, range(4)) 

cell 3

with open('portalocker_test.txt', 'r') as f:     for line in f:         print(line, end='') 

If I run this code once I get the expected result:

Out of cell 3:

1495614277.189394 1495614277.1893928 1495614277.1893911 1495614277.1894028 

But if I run cell 2 again (without restarting the notebook) I get:

--------------------------------------------------------------------------- TypeError                                 Traceback (most recent call last) <ipython-input-5-db9c07d32724> in <module>()       1 start = time()       2 with Pool(4) as p: ----> 3     p.map(f, range(4))  /Users/xxx/Homebrew/Cellar/python3/3.6.1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/pool.py in map(self, func, iterable, chunksize)     258         in a list that is returned.     259         ''' --> 260         return self._map_async(func, iterable, mapstar, chunksize).get()     261      262     def starmap(self, func, iterable, chunksize=None):  /Users/xxx/Homebrew/Cellar/python3/3.6.1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/pool.py in get(self, timeout)     606             return self._value     607         else: --> 608             raise self._value     609      610     def _set(self, i, obj):  /Users/xxx/Homebrew/Cellar/python3/3.6.1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/pool.py in _handle_tasks(taskqueue, put, outqueue, pool, cache)     383                         break     384                     try: --> 385                         put(task)     386                     except Exception as e:     387                         job, ind = task[:2]  /Users/xxx/Homebrew/Cellar/python3/3.6.1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/connection.py in send(self, obj)     204         self._check_closed()     205         self._check_writable() --> 206         self._send_bytes(_ForkingPickler.dumps(obj))     207      208     def recv_bytes(self, maxlength=None):  /Users/xxx/Homebrew/Cellar/python3/3.6.1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/multiprocessing/reduction.py in dumps(cls, obj, protocol)      49     def dumps(cls, obj, protocol=None):      50         buf = io.BytesIO() ---> 51         cls(buf, protocol).dump(obj)      52         return buf.getbuffer()      53   TypeError: cannot serialize '_io.TextIOWrapper' object 

The same error gets raised if I read the file before running cell 2. So, If I never open the file before running cell 2, all goes fine. If I open the file before, then I get that error. This is pretty inconsistent to me. What is going on? How to solve it?

Also, using or not portalocker will not change this behavior, so it is not portalocker the problem. I haven't check it on plain python but I am really interested in running it with Jupyter.

回答1:

the problem is that you should avoid same names for different objects, in your case should help

  • changing function name from f to function (or another name different from f)

    cell 1

    from time import time from multiprocessing import Pool import portalocker   def function(*args):     while time() < start + 1:         pass     with open('portalocker_test.txt', 'a') as f:         portalocker.lock(f, portalocker.LOCK_EX)         f.write(f'{time()}\n') 

    cell 2

    start = time() with Pool(4) as p:     p.map(function, range(4)) 

or

  • renaming file objects obtained with open from f to file (or another name different from f):

    cell 1

    from time import time from multiprocessing import Pool import portalocker   def f(*args):     while time() < start + 1:         pass     with open('portalocker_test.txt', 'a') as file:         portalocker.lock(file, portalocker.LOCK_EX)         file.write(f'{time()}\n') 

    cell 3

    with open('portalocker_test.txt', 'r') as file:     for line in file:         print(line, end='') 

or both



标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!