转载自:https://blog.csdn.net/LXX516/article/details/80132228
定义一个特征提取的类:
#中间特征提取 class FeatureExtractor(nn.Module): def __init__(self, submodule, extracted_layers): super(FeatureExtractor,self).__init__() self.submodule = submodule self.extracted_layers= extracted_layers def forward(self, x): outputs = [] for name, module in self.submodule._modules.items(): if name is "fc": x = x.view(x.size(0), -1) x = module(x) print(name) if name in self.extracted_layers: outputs.append(x) return outputs
#特征输出 myresnet=resnet18(pretrained=False) myresnet.load_state_dict(torch.load('cafir_resnet18_1.pkl')) exact_list=["conv1","layer1","avgpool"] myexactor=FeatureExtractor(myresnet,exact_list) x=myexactor(img)
在这里主要应用的是:
for nama, module in model._modules.items():
所以要根据自己的情况重写这个类,这个类提供个一个很不错的想法
文章来源: pytorch模型中间层特征的提取