机器学习项目步骤总结2

匿名 (未验证) 提交于 2019-12-03 00:30:01



文章结构:文章会解释每一步的作用,最后会贴出全部python代码,本文的数据下载地址:这里写链接内容

一、读取数据(原始数据)
读取数据可以看做数据收集,原始数据的状态。这里是csv文件,具体读取方式有很多,这里采用pandas的方法。

def opencsv():  # 使用pandas打开     data = pd.read_csv('data/train.csv')     data1 = pd.read_csv('data/test.csv')     train_x = data.values[0:, 1:]  # 读入全部训练数据     train_y = data.values[0:, 0]     result_x = data1.values[0:, 0:]  # 测试全部测试个数据     return train_x, train_y, result_x

二、数据预处理

数据预处理处理是对数据提前进行处理和修正。

常用的是:降维、空值、one-hot转换、归一化。三、交叉验证数据划分


(注意:交叉验证会改变数据顺序,若原始数据对你有用,可以先进行交叉验证,在进行降维等预处理,接下来会演示)

def data_pro(x,y):     x_train, x_test, y_train, y_test = train_test_split(x, y,test_size=0.1,random_state=33)     return x_train, x_test, y_train, y_test

四、模型建立及测试
用处理好的数据建立训练模型,对模型的评价有很多参数,常用的有:得分(对的比例)、查准率、查全率、F1指数

    #训练     knnClf = KNeighborsClassifier()  # k=5   KNN中邻值为5,     knnClf.fit(x_train, ravel(y_train))      #预测     y_predict = knnClf.predict(x_test)     print("score on the testdata:",knnClf.score(x_test,y_test))     # print("score on the traindata:",knnClf.score(x_train,y_train))     print(classification_report(y_test,y_predict))

五、预测的可能性计算
计算分类的概率大小

    # 可能性     probablity = knnClf.predict_proba(x_test)     list_pro = []     for i in range(probablity.shape[0]):         pro = max(list(probablity[i]))         list_pro.append(pro)

六、结果保存
将编号,原始结果,预测结果,预测概率保存csv

    #输出     index = np.array(id).reshape((-1,1))[:,0:1]     result = pd.DataFrame(np.column_stack((index.reshape(-1,1),np.array(y_test).reshape(-1,1),np.array(y_predict).reshape(-1,1),np.array(list_pro).reshape(-1,1))),                           columns=['ImageId','test_label','predict_lable','probablity'])     result.to_csv('result/knn_result.csv',index=False,header=True,encoding='gbk')

七、错误分析
错误本身就是一个很重要的东西,将错误分类保存起来。当需要对具体错误类型分析的时候,可以逐个分析错误。(比如当对‘4’分类错误比价多的时候,可以加大‘4’的权重,使得其充分训练)

    #错误分析     diff_index = []     for i in range(result.shape[0]):         diff_index.append(result['test_label'][i] != result['predict_lable'][i])     print(diff_index)     diff = result[diff_index]     diff_x = x_test_original[diff_index]      #查看每个错误     for i in range(len(diff_index)):         # print("label is:",diff['test_label'][i],"predict is:",diff['predict_lable'][i])         print("test label is :",diff.iloc[i]['test_label'],'predict label is :',diff.iloc[i]['predict_lable'])         x = diff_x[i]         img = x.reshape(28,28)         image_show(img)      diff.to_csv('result/knn_result_diff.csv',index=False,header=True,encoding='gbk')

全部代码:

import pandas as pd import time from numpy import ravel, savetxt from sklearn import svm from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import numpy as np from sklearn.decomposition import PCA import matplotlib.pyplot as plt  def image_show(img):     plt.imshow(img)     plt.show()  def opencsv():  # 使用pandas打开     data = pd.read_csv('data/train.csv')     data1 = pd.read_csv('data/test.csv')     train_x = data.values[0:, 1:]  # 读入全部训练数据     train_y = data.values[0:, 0]     result_x = data1.values[0:, 0:]  # 测试全部测试个数据     return train_x, train_y, result_x  def data_pro(x,y):     x_train, x_test, y_train, y_test = train_test_split(x, y,test_size=0.1,random_state=33)     return x_train, x_test, y_train, y_test  def knnClassify(x_train, x_test, y_train, y_test):     id = range(1,x_test.shape[0]+1)     print("start run knn.")     #训练     knnClf = KNeighborsClassifier()  # k=5   KNN中邻值为5,     knnClf.fit(x_train, ravel(y_train))      #预测     y_predict = knnClf.predict(x_test)     print("score on the testdata:",knnClf.score(x_test,y_test))     # print("score on the traindata:",knnClf.score(x_train,y_train))     print(classification_report(y_test,y_predict))     # 可能性     probablity = knnClf.predict_proba(x_test)     list_pro = []     for i in range(probablity.shape[0]):         pro = max(list(probablity[i]))         list_pro.append(pro)     #输出     index = np.array(id).reshape((-1,1))[:,0:1]     result = pd.DataFrame(np.column_stack((index.reshape(-1,1),np.array(y_test).reshape(-1,1),np.array(y_predict).reshape(-1,1),np.array(list_pro).reshape(-1,1))),                           columns=['ImageId','test_label','predict_lable','probablity'])     result.to_csv('result/knn_result.csv',index=False,header=True,encoding='gbk')      #错误分析     diff_index = []     for i in range(result.shape[0]):         diff_index.append(result['test_label'][i] != result['predict_lable'][i])     print(diff_index)     diff = result[diff_index]     diff_x = x_test_original[diff_index]      #查看每个错误     for i in range(len(diff_index)):         # print("label is:",diff['test_label'][i],"predict is:",diff['predict_lable'][i])         print("test label is :",diff.iloc[i]['test_label'],'predict label is :',diff.iloc[i]['predict_lable'])         x = diff_x[i]         img = x.reshape(28,28)         image_show(img)      diff.to_csv('result/knn_result_diff.csv',index=False,header=True,encoding='gbk')  def svmClassify(train_x, train_y, test_x):     id = range(1, 28001)     t = time.time()     svc = svm.SVC(kernel='rbf', C=10)     svc.fit(train_x, train_y)     h = time.time()     print('time used:%f' % (h - t))     test_y = svc.predict(test_x)     k = time.time()      print('time used:%f' % (k - h))     savetxt('sklearn_svm_Result.csv', test_y, delimiter=',')     result = pd.DataFrame(np.column_stack((np.array(id).reshape((-1, 1))[:, 0:1], np.array(test_y).reshape((-1, 1))[:, 0:1])),                           columns=['ImageId', 'Label'])      result.to_csv("sklearn_knn_Result2.csv", index=False, header=True, encoding='gbk')   if __name__ == "__main__":     print("start.")     #原数据     train_x_original, train_y_original, result_x_original = opencsv()     # 交叉验证     x_train_original, x_test_original, y_train, y_test = data_pro(train_x_original, train_y_original)     # 降维     pca = PCA(n_components=0.8, whiten=True)     train_x_pca = pca.fit_transform(x_train_original)     x_test_pca = pca.transform(x_test_original)     result_x_pca = pca.transform(result_x_original)     #knn     knnClassify(train_x_pca, x_test_pca, y_train, y_test)     #SVM     # svmClassify(train_x,train_y,test_x)     print("end.")
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!