train -= np.mean(train, axis = 0) # zero-center train /= np.std(train, axis = 0) # normalize test -= np.mean(test,axis=0) test /= np.std(test,axis=0)
def init_weight(self): for name, param in self.lstm.named_parameters(): if 'bias' in name: nn.init.constant(param, 0.0) print('\nbias init done') elif 'weight' in name: nn.init.orthogonal(param) print('\nweight init done')
5.learning_rate一般取0.001
文章来源: LSTM调参感悟