归并排序

匿名 (未验证) 提交于 2019-12-03 00:27:02

《算法导论》第3版2.3.1分治法里提出了归并排序的算法

归并排序算法完全遵循分治模式
1)分解:分解待排序的n个元素的序列成各具n/2个元素的两个子序列
2)解决:使用归并排序递归地排序两个子序列
3)合并:合并两个已排序的子序列以产生已排序的答案

设置哨兵,它不可能为较小值

void mergeWithSentry(int A[], int left, int mid, int right) {     int n1 = mid - left + 1;     int n2 = right - mid;      int *L = new int[n1 + 1];     int *R = new int[n2 + 1];      for (int i = 0; i < n1; ++i)         L[i] = A[left + i];     for (int j = 0; j < n2; ++j)         R[j] = A[mid + 1 + j];      L[n1] = INT_MAX;     R[n2] = INT_MAX;      int i = 0, j = 0;      int k = left;     while (k <= right)     {         if (L[i] <= R[j])             A[k++] = L[i++];         else             A[k++] = R[j++];     }      delete L;     L = NULL;      delete R;     R = NULL; }  void merge_sort(int A[], int left, int right) {     if (left < right)     {         int mid = left + (right - left) / 2;         merge_sort(A, left, mid);         merge_sort(A, mid + 1, right);         // mergeWithSentry(A, left, mid, right);         mergeWithoutSentry(A, left, mid, right);     } }

《算法导论》第3版习题2.3-2提出
重写过程merge,使之不使用哨兵,而是一旦数组L或R的所有元素均被复制回A就立刻停止,然后把另一个数组的剩余部分复制回A。

void mergeWithoutSentry(int A[], int left, int mid, int right) {     int n1 = mid - left + 1;     int n2 = right - mid;      int *L = new int[n1];     int *R = new int[n2];      for (int i = 0; i < n1; ++i)         L[i] = A[left + i];     for (int j = 0; j < n2; ++j)         R[j] = A[mid + 1 + j];      int i = 0, j = 0;     int k = left;     while (i < n1 && j < n2)     {         if (L[i] <= R[j])             A[k++] = L[i++];         else             A[k++] = R[j++];     }      while (i < n1)         A[k++] = L[i++];     while (j < n2)         A[k++] = R[j++];      delete L;     L = NULL;      delete R;     R = NULL; }  void merge_sort(int A[], int left, int right) {     if (left < right)     {         int mid = left + (right - left) / 2;         merge_sort(A, left, mid);         merge_sort(A, mid + 1, right);         // mergeWithSentry(A, left, mid, right);         mergeWithoutSentry(A, left, mid, right);     } }

注意不要对L和R数组的长度计算错误
不要遗漏对L和R数组的初始化,以及初始化时的下标
注意k的取值范围不要和i,j的取值范围混淆
记得不要遗漏i,j,k的自增、在什么时候自增
设置哨兵:注意不要遗漏哨兵的设置
不使用哨兵:注意L或R数组是否未遍历完,若有剩余元素注意不能遗漏

void merge(int A[], int left, int mid, int right, int temp[]) {     int i = left, j = mid + 1;     int k = left;      while (i <= mid && j <= right)     {         if (A[i] <= A[j])             temp[k++] = A[i++];         else             temp[k++] = A[j++];     }      while(i <= mid)         temp[k++] = A[i++];     while (j <= right)         temp[k++] = A[j++];      // 注意 i <= right 不要写成 i < right     for (int i = left; i <= right; ++i)         A[i] = temp[i]; }   void merge_sort(int A[], int left, int right, int temp[]) {     if (left < right)     {         int mid = left + (right - left) / 2;         merge_sort(A, left, mid, temp);         merge_sort(A, mid + 1, right, temp);         merge(A, left, mid, right, temp);     } }

完整源代码放于github
相关代码:
合并两个有序数组-LeetCode-088. Merge Sorted Array

转载请标明出处:归并排序
文章来源: 归并排序
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!