归并排序-循环实现

匿名 (未验证) 提交于 2019-12-03 00:26:01
归并排序是建立在归并操作基础上的一种排序方法。归并操作,是指将两个已排序的子序列合并成一个有序序列的过程
归并操作的过程如下:
  1. 申请额外空间用于放置两个子序列归并后的结果
  2. 设置两个指针分别指向两个已排子序列的第一个位置
  3. 比较两个指针指向的元素,并将较小的那个放到1中申请的空间内,当前指针向后移动一格
  4. 重复3,直到某个子序列的指针指向该序列的结尾
  5. 将另一序列剩余元素全部放入到1中空间内,归并操作结束
/* 归并排序 - 循环实现 */ /* L = 左边起始位置, R = 右边起始位置, RightEnd = 右边终点位置*/ void Merge( ElementType A[], ElementType TmpA[], int L, int R, int RightEnd ) { /* 将有序的A[L]~A[R-1]和A[R]~A[RightEnd]归并成一个有序序列 */      int LeftEnd, NumElements, Tmp;      int i;             LeftEnd = R - 1; /* 左边终点位置 */      Tmp = L;         /* 有序序列的起始位置 */      NumElements = RightEnd - L + 1;             while( L <= LeftEnd && R <= RightEnd ) {          if ( A[L] <= A[R] )              TmpA[Tmp++] = A[L++]; /* 将左边元素复制到TmpA */          else              TmpA[Tmp++] = A[R++]; /* 将右边元素复制到TmpA */      }      while( L <= LeftEnd )          TmpA[Tmp++] = A[L++]; /* 直接复制左边剩下的 */      while( R <= RightEnd )          TmpA[Tmp++] = A[R++]; /* 直接复制右边剩下的 */                 for( i = 0; i < NumElements; i++, RightEnd -- )          A[RightEnd] = TmpA[RightEnd]; /* 将有序的TmpA[]复制回A[] */ }  /* length = 当前有序子列的长度*/ void Merge_pass( ElementType A[], ElementType TmpA[], int N, int length ) { /* 两两归并相邻有序子列 */      int i, j;      //i<=N-2*length,因为归并到最后,两个有序序列的尾巴长度不一,要单独处理      for ( i=0; i <= N-2*length; i += 2*length )          Merge( A, TmpA, i, i+length, i+2*length-1 );//i+length意味着是右子序列的开始      if ( i+length < N ) /* 归并最后2个子列*/          Merge( A, TmpA, i, i+length, N-1);      else /* 最后只剩1个子列*/          for ( j = i; j < N; j++ ) TmpA[j] = A[j]; } //函数统一接口 void Merge_Sort( ElementType A[], int N ) {      int length;      ElementType *TmpA;             length = 1; /* 初始化子序列长度*/      TmpA = malloc( N * sizeof( ElementType ) );      if ( TmpA != NULL ) {           while( length < N ) {               Merge_pass( A, TmpA, N, length );               length *= 2;               Merge_pass( TmpA, A, N, length );               length *= 2;           }           free( TmpA );      }      else printf( "空间不足" ); }

归并算法是一个稳定的排序算法,并且它的时间复杂度不高,每一趟归并操作都需要O(N)次比较,一共需要进行O(logN)次归并,所以归并排序的时间复杂度是O(NlogN)。相对于快排和堆排序,归并排序虽然消耗更多的空间,但整体的排序过程是稳定的。
归并的弊端在于,开辟大块的额外空间并将两个数组来回复制是非常耗时的,所以他一般不会用于内部排序(在内存内就可以完成的排序),但他在外部排序,分布式计算上非常有用。





















转载请标明出处:归并排序-循环实现
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!