P1742 最小圆覆盖
题目描述
给出N个点,让你画一个最小的包含所有点的圆。
输入格式
先给出点的个数N,2<=N<=100000,再给出坐标Xi,Yi.(-10000.0<=xi,yi<=10000.0)
输出格式
输出圆的半径,及圆心的坐标,保留10位小数
输入输出样例
6
8.0 9.0
4.0 7.5
1.0 2.0
5.1 8.7
9.0 2.0
4.5 1.0
输出 #1
5.0000000000
5.0000000000 5.0000000000
说明/提示
5.00 5.00 5.0
随机数处理复杂度为O(n)
第一个点定为圆心;
第二个点和第一个点的连线的中点定位圆心,距离为直径;
第三个点要和前两个点进行三点定圆;
#pragma GCC optimize(2) #pragma GCC optimize(3, "Ofast", "inline") #include<bits/stdc++.h>//O(n) #define ll long long #define met(a, x) memset(a,x,sizeof(a)) #define inf 0x3f3f3f3f #define ull unsigned long long using namespace std; const double eps = 1e-12; struct node { double x, y; } s[500005]; node o;//圆心坐标 double ri;//半径 double dis(node a, node b) { return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)); } void getr(node p1, node p2, node p3) {//三个点求三角形圆心坐标和半径 double a, b, c, d, e, f; a = p2.y - p1.y; b = p3.y - p1.y; c = p2.x - p1.x; d = p3.x - p1.x; f = p3.x * p3.x + p3.y * p3.y - p1.x * p1.x - p1.y * p1.y; e = p2.x * p2.x + p2.y * p2.y - p1.x * p1.x - p1.y * p1.y; o.x = (a * f - b * e) / (2 * a * d - 2 * b * c); o.y = (d * e - c * f) / (2 * a * d - 2 * b * c); ri = dis(o, p1); } int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; for (int i = 1; i <= n; i++) { cin >> s[i].x >> s[i].y; } random_shuffle(s + 1, s + n + 1); o = s[1]; ri = 0; for (int i = 2; i <= n; i++) { if (dis(s[i], o) > ri + eps) { o = s[i]; ri = 0;//第一个点为圆心 for (int j = 1; j < i; j++) { if (dis(o, s[j]) > ri + eps) { o.x = (s[i].x + s[j].x) / 2; o.y = (s[i].y + s[j].y) / 2; ri = dis(o, s[j]);//第一个点和第二个点中点为圆心,距离为直径 for (int k = 1; k < j; k++) { if (dis(o, s[k]) > ri + eps) { getr(s[i], s[j], s[k]);//三点定圆 } } } } } } cout << fixed << setprecision(10) << ri << endl; cout << fixed << setprecision(10) << o.x << ' ' << fixed << setprecision(10) << o.y << endl; return 0; }
来源:博客园
作者:oc_co
链接:https://www.cnblogs.com/nublity/p/11620792.html