网络流24题の详解

匿名 (未验证) 提交于 2019-12-03 00:02:01

把网络流24题刷完我就算萌新了。
(持续更新直到刷完为止)

\(1.\)洛谷P2756 飞行员配对方案问题
题意:派出最多架的飞机,并且每架飞机上都是一个英国飞行员和外籍飞行员
分析:经典的二分图匹配问题,将英国飞行员当做二分图的左部,外籍飞行员当做二分图的右部。可以用匈牙利算法求解,但这里使用网络流(最大流)。
考虑如何建图:
设立一个源点\(st\),一个汇点\(ed\)
\(I.\)让源点\(st\)向二分图的左部建一条流量为\(1\)的边,
\(II.\)让二分图的右部向汇点\(ed\)建一条流量为\(1\)的边,
\(III.\)如果英国飞行员\(u\)可以和外籍飞行员\(v\)配合,那么\(u\)\(v\)建一条流量为\(1\)的边。
最后跑一遍最大流即可得到最大匹配数。
如何输出配对方案:
遍历所有的英国飞行员所连的边,如果此边\((u,v)\)流量不是\(1\)而是\(0\)说明\((u,v)\)配对。注意源点向英国飞行员所连的边流量会为0,但此时不应输出。

#include <bits/stdc++.h> using namespace std;  typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> pii;  const int maxn  = 300 + 5; const int inf   = 0x3f3f3f3f;  int n, m, u, v, st, ed, cnt, ans, head[maxn]; int flag, maxflow, vis[maxn], cur[maxn], deep[maxn];  struct Graph {     int v, w, next; } edge[2 * maxn * maxn];  void addedge(int u, int v, int w) {     edge[cnt].v = v;     edge[cnt].w = w;     edge[cnt].next = head[u];     head[u] = cnt++; }  int bfs(int st, int ed) {     for (int i = 0; i <= n + m + 5; i++) vis[i] = 0, cur[i] = head[i], deep[i] = inf;     queue<int> q;     q.push(st);     deep[st] = 0;     while (!q.empty()) {         int u = q.front();         q.pop();         for (int i = head[u]; ~i; i = edge[i].next) {             int v = edge[i].v;             if (deep[v] > deep[u] + 1 && edge[i].w) {                 deep[v] = deep[u] + 1;                 if (!vis[v]) {                     vis[v] = 1;                     q.push(v);                 }             }         }     }     return deep[ed] != inf; }  int dfs(int u, int ed, int flow) {     if (u == ed) {         flag = 1;         maxflow += flow;         return flow;     }     int now = 0, used = 0;     for (int i = cur[u]; ~i; i = edge[i].next) {         int v = edge[i].v;         cur[u] = i;         if (deep[v] == deep[u] + 1 && edge[i].w) {             if (now = dfs(v, ed, min(flow - used, edge[i].w))) {                 used += now;                 edge[i].w -= now;                 edge[i ^ 1].w += now;                 if (used == flow) break;             }         }     }     return used; }  int dinic(int st, int ed) {     while (bfs(st, ed)) {         flag = 1;         while (flag) flag = 0, dfs(st, ed, inf);     }     return maxflow; }  int main() {     memset(head, -1, sizeof head);     scanf("%d %d", &n, &m);     st = 0, ed = m + 1;     while (~scanf("%d %d", &u, &v)) {         if (u == -1 && v == -1) break;         addedge(u, v, 1), addedge(v, u, 0);     }     for (int i = 1; i <= n; i++) addedge(st, i, 1), addedge(i, st, 0);     for (int i = n + 1; i <= m; i++) addedge(i, ed, 1), addedge(ed, i, 0);     ans = dinic(st, ed);     if (!ans) return 0 * puts("No Solution!");     printf("%d\n", ans);     for (int i = 1; i <= n; i++) {         for (int j = head[i]; ~j; j = edge[j].next) {             if (edge[j].v != st && edge[j].w == 0 && edge[j ^ 1].w == 1)                 printf("%d %d\n", i, edge[j].v);         }     }     return 0; }

\(2.\)洛谷P2764 最小路径覆盖问题
做这道题首先我们要知道一个关于二分图的公式,

最小路径覆盖数 = 图的顶点数 - 图相应的二分图的最大匹配数

图转化为相应的二分图:对每个点拆点,拆成入点\(x_1\)(\(i\))和出点\(x_2\)(\(i+n\)),将这些入点作为二分图的左部,出点作为二分图的右部。
\(1\)中一样建立源点与汇点,源点与左部相连,右部与汇点相连。
对于边(\(u,v\)),我们将\(u\)连向\(v+n\)即可。
跑一遍最大流,得到最大匹配数,则最小路径覆盖数就得到了。
如何输出路径:遍历所有的边(\(u,v\))(正向边即可),如果这条边的流量为\(0\),说明这条边一定在某条路径上。我们用非路径压缩的并查集来维护这些关系,如果此边流量为\(0\),则将\(v\)并向\(u\)。那么最后一定有祖先为自己的点,\(dfs\)这些点即可。判断边的时候要注意源点的影响,

#include <bits/stdc++.h> using namespace std;  typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> pii;  const int maxn  = 300 + 5; const int maxm  = 12000 + 5; const int inf   = 0x3f3f3f3f;  int n, m, cnt, pre[maxn], head[maxn]; int u, v, st, ed, flag, maxflow, deep[maxn], vis[maxn], cur[maxn];  struct Graph {     int u, v, w, next; } edge[maxm << 1];  void addedge(int u, int v, int w) {     edge[cnt].u = u;     edge[cnt].v = v;     edge[cnt].w = w;     edge[cnt].next = head[u];     head[u] = cnt++; }  int bfs(int st, int ed) {     for (int i = 0; i <= n + n + 5; i++) deep[i] = inf, vis[i] = 0, cur[i] = head[i];     queue<int> q;     q.push(st);     deep[st] = 0;     while (!q.empty()) {         int u = q.front();         q.pop();         vis[u] = 0;         for (int i = head[u]; ~i; i = edge[i].next) {             int v = edge[i].v, w = edge[i].w;             if (w && deep[v] > deep[u] + 1) {                 deep[v] = deep[u] + 1;                 if (!vis[v]) {                     vis[v] = 1;                     q.push(v);                 }             }         }     }     return deep[ed] != inf; }  int dfs(int u, int ed, int flow) {     if (u == ed) {         flag = 1;         maxflow += flow;         return flow;     }     int now = 0, used = 0;     for (int i = cur[u]; ~i; i = edge[i].next) {         cur[u] = i;         int v = edge[i].v;         if (edge[i].w && deep[v] == deep[u] + 1) {             now = dfs(v, ed, min(flow - used, edge[i].w));             if (!now) continue;             edge[i].w -= now;             edge[i ^ 1].w += now;             used += now;             if (used == flow) break;         }     }     return used; }  void dinic(int st, int ed) {     while (bfs(st, ed)) {         flag = 1;         while (flag) {             flag = 0;             dfs(st, ed, inf);         }     } }  void dfs(int x) {     printf("%d ", x);     vis[x] = 1;     for (int i = head[x]; ~i; i = edge[i].next) {         if (!vis[edge[i].v] && edge[i].w == 0 && edge[i].v > n) {             dfs(edge[i].v - n);         }     } }  int main() {     scanf("%d %d", &n, &m);     memset(head, -1, sizeof head);     for (int i = 1; i <= m; i++) {         scanf("%d %d", &u, &v);         addedge(u, v + n, 1), addedge(v + n, u, 0);     }     st = 0, ed = n + n + 1;     for (int i = 1; i <= n; i++) addedge(st, i, 1), addedge(i, st, 0);     for (int i = n + 1; i <= n + n; i++) addedge(i, ed, 1), addedge(ed, i, 0);     dinic(st, ed);     for (int i = 1; i <= n; i++) pre[i] = i;     for (int j = 0; j <= cnt; j++) {         if (edge[j].u >= 1 && edge[j].u <= n && edge[j].v > n && edge[j].v <= n + n && edge[j].w == 0) {         //  if (pre[edge[j].v - n] != pre[edge[j].u])              pre[edge[j].v - n] = pre[edge[j].u];         }     }     memset(vis, 0, sizeof vis);     for (int i = 1; i <= n; i++) {         if (pre[i] == i) {             dfs(i);             puts("");         }     }     printf("%d\n", n - maxflow);     return 0; }

\(3.\)洛谷P2765 魔术球问题
分析:因为柱子数是固定不变的,我们可以将\(n\)根柱子理解为\(n\)条路径。那么问题就可以转化为不断向路径中加入数,直到加入某个数使得路径数\(>\)\(n\)。从\(1\)开始枚举直到不满足条件。
如何建图:
每次新枚举一个数\(x\),那么它有可能是一个柱子的开头,所以我们从源点向\(x\)建一条流量为\(1\)的边,它也有可能是某个柱子的最后一个数,所以\(x\)向汇点连一条流量为\(1\)的边。然后现在就是考虑数和数之间的边,题目限制\(x\)只有和相邻数相加为完全平方数时才能放入,所以枚举\(y\)\(\in\)\([1,x-1]\),如果\(y\)能与\(x\)形成完全平方数就和\(x\)建边(\(x\)作为右部)。
然后在残余网络上跑最大流得到每次的最大匹配数,每次让总顶点数减去其再判断即可。

#include <bits/stdc++.h> using namespace std;  typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> pii;  const int maxn  = 7000 + 5; const int maxm  = 100 + 5; const int inf   = 0x3f3f3f3f;  int n, cnt, head[maxn]; int st, ed, ans, now, maxf, flag, deep[maxn], vis[maxn], cur[maxn], path[maxn];  struct Graph {     int v, w, next; } edge[200000];  void addedge(int u, int v, int w) {     edge[cnt].v = v;     edge[cnt].w = w;     edge[cnt].next = head[u];     head[u] = cnt++; }  int bfs(int st, int ed) {     for (int i = 0; i <= ed; i++) deep[i] = inf, vis[i] = 0, cur[i] = head[i];     queue<int> q;     q.push(st);     deep[st] = 0;     while (!q.empty()) {         int u = q.front();         q.pop();         vis[u] = 0;         for (int i = head[u]; ~i; i = edge[i].next) {             int v = edge[i].v;             if (edge[i].w && deep[v] > deep[u] + 1) {                 deep[v] = deep[u] + 1;                 if (!vis[v]) {                     vis[v] = 1;                     q.push(v);                 }             }         }     }     return deep[ed] != inf; }  int dfs(int u, int ed, int flow) {     if (u == ed) {         flag = 1;         maxf += flow;         return flow;     }     int now = 0, used = 0;     for (int i = cur[u]; ~i; i = edge[i].next) {         int v = edge[i].v;         cur[u] = i;         if (edge[i].w && deep[v] == deep[u] + 1) {             now = dfs(v, ed, min(flow - used, edge[i].w));             if (!now) continue;             edge[i].w -= now;             edge[i ^ 1].w += now;             used += now;             if (used == flow) break;         }     }     return used; }  void dinic(int st, int ed) {     while (bfs(st, ed)) {         flag = 1;         while (flag) {             flag = 0;             dfs(st, ed, inf);         }     } }  int main() {     scanf("%d", &n);     memset(head, -1, sizeof head);     st = 0, ed = 5001;     while (true) {         ans++, now++;         addedge(st, now, 1), addedge(now, st, 0);         for (int i = 1; i <= now - 1; i++) {             if (sqrt(i + now) == (int)(sqrt(i + now)))                 addedge(i, now + 2000, 1), addedge(now + 2000, i, 0);         }         addedge(now + 2000, ed, 1), addedge(ed, now + 2000, 0);         maxf = 0, dinic(st, ed);         ans -= maxf;         if (ans > n) break;     }     printf("%d\n", now - 1);     for (int i = 1; i <= now - 1; i++) {         for (int j = head[i]; ~j; j = edge[j].next) {             if (!edge[j].w) {                 path[i] = edge[j].v - 2000;                 break;             }         }     }     memset(vis, 0, sizeof vis);     for (int i = 1; i <= now - 1; i++) {         if (vis[i]) continue;         int temp = i;         while (temp != -2000) {             vis[temp] = 1;             printf("%d ", temp);             temp = path[temp];         }         puts("");     }     return 0; }

\(4.\)洛谷P2763 试题库问题
分析:
二分匹配,只不过左部可以匹配多个右部。
让题的类型\(x\in[1,n]\)作为二分图的左部,让题\(y\in[n+1,n+1+m]\)作为二分图的右部。
源点向题的类型建流量为题类型所需题数的边,题向汇点建流量为\(1\)的边(题只能用在某个类型一次),题的类型与题建流量为\(1\)的边。跑一遍最大流即可。
输出方案:枚举题的类型所连的边,判断流量是否为\(0\)即是否匹配上即可。

#include <bits/stdc++.h> using namespace std;  typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> pii;  const int maxn  = 20000 + 5; const int maxm  = 100 + 5; const int inf   = 0x3f3f3f3f;  int k, n, m, x, y; int st, ed, cnt, head[maxn]; int maxf, flag, deep[maxn], cur[maxn], vis[maxn];  struct Graph {     int v, w, next; } edge[maxn << 1];  void addedge(int u, int v, int w) {     edge[cnt].v = v;     edge[cnt].w = w;     edge[cnt].next = head[u];     head[u] = cnt++; }  int bfs(int st, int ed) {     for (int i = 0; i <= ed; i++) vis[i] = 0, deep[i] = inf, cur[i] = head[i];     queue<int> q;     q.push(st);     deep[st] = 0;     while (!q.empty()) {         int u = q.front();         q.pop();         vis[u] = 0;         for (int i = head[u]; ~i; i = edge[i].next) {             int v = edge[i].v;             if (edge[i].w && deep[v] > deep[u] + 1) {                 deep[v] = deep[u] + 1;                 if (!vis[v]) {                     vis[v] = 1;                     q.push(v);                 }             }         }     }     return deep[ed] != inf; }  int dfs(int u, int ed, int flow) {     if (u == ed) {         flag = 1;         maxf += flow;         return flow;     }     int now = 0, used = 0;     for (int i = cur[u]; ~i; i = edge[i].next) {         cur[u] = head[i];         int v = edge[i].v;         if (edge[i].w && deep[v] == deep[u] + 1) {             now = dfs(v, ed, min(flow - used, edge[i].w));             if (!now) continue;             edge[i].w -= now;             edge[i ^ 1].w += now;             used += now;             if (used == flow) break;         }     }     return used; }  void dinic(int st, int ed) {     while (bfs(st, ed)) {         flag = 1;         while (flag) {             flag = 0;             dfs(st, ed, inf);         }     } }  int main() {     memset(head, -1, sizeof head);     scanf("%d %d", &k, &n);     st = 0, ed = 20002;     for (int i = 1; i <= k; i++) {         scanf("%d", &x);         addedge(st, i, x), addedge(i, st, 0);         m += x;     }     for (int i = 1; i <= n; i++) {         scanf("%d", &x);         for (int j = 1; j <= x; j++) {             scanf("%d", &y);             addedge(y, i + k, 1), addedge(i + k, y, 0);         }         addedge(i + k, ed, 1), addedge(ed, i + k, 0);     }     dinic(st, ed);     for (int i = 1; i <= k; i++) {         printf("%d: ", i);         for (int j = head[i]; ~j; j = edge[j].next) {             if (edge[j].w == 0 && edge[j].v != st) printf("%d ", edge[j].v - k);         }         puts("");     }     return 0; } 
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!