cifar-10数据集的可视化

匿名 (未验证) 提交于 2019-12-02 23:55:01

 

import numpy as np from PIL import Image import pickle import os   CHANNEL = 3 WIDTH = 32 HEIGHT = 32   data = [] labels=[] classification = ['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','truck']   for i in range(5):     with open(r"...\cifar-10-batches-py\data_batch_"+ str(i+1),mode='rb') as file:         data_dict = pickle.load(file, encoding='bytes')         data+= list(data_dict[b'data'])         labels+= list(data_dict[b'labels'])   img =  np.reshape(data,[-1,CHANNEL, WIDTH, HEIGHT])     data_path = "data/images/" if not os.path.exists(data_path):     os.makedirs(data_path) for i in range(img.shape[0]):       r = img[i][0]     g = img[i][1]     b = img[i][2]       ir = Image.fromarray(r)     ig = Image.fromarray(g)     ib = Image.fromarray(b)     rgb = Image.merge("RGB", (ir, ig, ib))       name = "img-" + str(i) +"-"+ classification[labels[i]]+ ".png"     rgb.save(data_path + name, "PNG")
with open(r"...\cifar-10-batches-py\data_batch_"+ str(i+1),mode='rb') as file:这一句中第一个参数是文件的全路径。根据自己文件的存放位置该变这个参数。

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!