卡特兰数相关

匿名 (未验证) 提交于 2019-12-02 23:49:02

卡特兰数

公式

1.递推式1(定义式):f(n)=sigma(f[i]*f[n-i-1])(0<=i<=n-1)

2.递推式2:f(n+1)=f(n)*(4n+2)/(n+2);

f[n]=f(n-1)*(4n-2)/(n+1)

注:递推式中f(0)=1;

3.通项公式1:f(n)=C(2n,n)/(n+1);

4.通项公式2:f(n)=C(2n,n)-C(2n,n+1);

证明 博客推荐:(部分内容来自此博客)

https://www.cnblogs.com/zyt1253679098/p/9190217.html

在上文提到的出栈序列的问题情景中,如果有n个元素,在平面直角坐标系中用x坐标表示入栈数,y坐标表示出栈数,则坐标(a,b)表示目前已经进行了a次入栈和b次出栈,则再进行一次入栈就是走到(a+1,b),再进行一次出栈就是走到(a,b+1)。并且,由于入栈数一定小于等于出栈数,所以路径不能跨越直线y=x

因此,题目相当于求从(0,0)走到(n,n)且不跨越直线y=x的方案数
方案数=总方案数-不合法方案数;
首先,如果不考虑不能跨越直线y=x的要求,相当于从2n次操作中选n次进行入栈,相当于从2n个位置选n个位置作为入栈时间,则方案数为C(2n,n),这是总方案数。



(卡特兰数其他公式的数学证明详见推荐的博客,~~打符号太麻烦了~~)

应用

1、一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?

2、n个节点构成的二叉树,共有多少种情形?

3、求一个凸多边形区域划分成三角形区域的方法数?

4、在圆上选择2n个点,将这些点成对链接起来使得所得到的n条线段不相交,一共有多少种方法?(下图供参考)

5、n* n的方格地图中,从一个角到另外一个角,不跨越对角线的路径数为h(n)

6、n层的阶梯切割为n个矩形的切法数也是。

卡特兰数的前一百位

//以下数据是从1开始的 //打表是千万不能忘记h[0]=1的边界,特别坑 //写递推程序时一定要先写h[0]=0; string catalan[]={     "1",     "2",     "5",     "14",     "42",     "132",     "429",     "1430",     "4862",     "16796",     "58786",     "208012",     "742900",     "2674440",     "9694845",     "35357670",     "129644790",     "477638700",     "1767263190",     "6564120420",     "24466267020",     "91482563640",     "343059613650",     "1289904147324",     "4861946401452",     "18367353072152",     "69533550916004",     "263747951750360",     "1002242216651368",     "3814986502092304",     "14544636039226909",     "55534064877048198",     "212336130412243110",     "812944042149730764",     "3116285494907301262",     "11959798385860453492",     "45950804324621742364",     "176733862787006701400",     "680425371729975800390",     "2622127042276492108820",     "10113918591637898134020",     "39044429911904443959240",     "150853479205085351660700",     "583300119592996693088040",     "2257117854077248073253720",     "8740328711533173390046320",     "33868773757191046886429490",     "131327898242169365477991900",     "509552245179617138054608572",     "1978261657756160653623774456",     "7684785670514316385230816156",     "29869166945772625950142417512",     "116157871455782434250553845880",     "451959718027953471447609509424",     "1759414616608818870992479875972",     "6852456927844873497549658464312",     "26700952856774851904245220912664",     "104088460289122304033498318812080",     "405944995127576985730643443367112",     "1583850964596120042686772779038896",     "6182127958584855650487080847216336",     "24139737743045626825711458546273312",     "94295850558771979787935384946380125",     "368479169875816659479009042713546950",     "1440418573150919668872489894243865350",     "5632681584560312734993915705849145100",     "22033725021956517463358552614056949950",     "86218923998960285726185640663701108500",     "337485502510215975556783793455058624700",     "1321422108420282270489942177190229544600",     "5175569924646105559418940193995065716350",     "20276890389709399862928998568254641025700",     "79463489365077377841208237632349268884500",     "311496878311103321137536291518809134027240",     "1221395654430378811828760722007962130791020",     "4790408930363303911328386208394864461024520",     "18793142726809884575211361279087545193250040",     "73745243611532458459690151854647329239335600",     "289450081175264899454283846029490767264392230",     "1136359577947336271931632877004667456667613940",     "4462290049988320482463241297506133183499654740",     "17526585015616776834735140517915655636396234280",     "68854441132780194707888052034668647142985206100",     "270557451039395118028642463289168566420671280440",     "1063353702922273835973036658043476458723103404520",     "4180080073556524734514695828170907458428751314320",     "16435314834665426797069144960762886143367590394940",     "64633260585762914370496637486146181462681535261000",     "254224158304000796523953440778841647086547372026600",     "1000134600800354781929399250536541864362461089950800",     "3935312233584004685417853572763349509774031680023800",     "15487357822491889407128326963778343232013931127835600",     "60960876535340415751462563580829648891969728907438000",     "239993345518077005168915776623476723006280827488229600",     "944973797977428207852605870454939596837230758234904050",     "3721443204405954385563870541379246659709506697378694300",     "14657929356129575437016877846657032761712954950899755100",     "57743358069601357782187700608042856334020731624756611000",     "227508830794229349661819540395688853956041682601541047340",     "896519947090131496687170070074100632420837521538745909320" }; 

  

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!